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Abstract 

Two new spatio-temporal hidden Markov models (HMM) are introduced in this thesis, 

with the purpose of capturing the persistent, spatially non-homogeneous nature of 

climate influence on annual rainfall series observed in Australia. The models extend the 

two-state HMM applied by Thyer (2001) by relaxing the assumption that all sites are 

under the same climate control. The Switch HMM (SHMM) allows at-site anomalous 

states, whilst still maintaining a regional control. The Regional HMM (RHMM), on the 

other hand, allows sites to be partitioned into different Markovian state regions.  

The analyses were conducted using a Bayesian framework to explicitly account for 

parameter uncertainty and select between competing hypotheses. Bayesian model 

averaging was used for comparison of the HMM and its generalisations. 

The HMM, SHMM and RHMM were applied to four groupings of four sites located on 

the Eastern coast of Australia, an area that has previously shown evidence of inter-

annual persistence. In the majority of case studies, the RHMM variants showed greatest 

posterior weight, indicating that the data favoured the multiple region RHMM over the 

single region HMM or the SHMM variants. In no cases does the HMM produce the 

maximum marginal likelihood when compared to the SHMM and RHMM.   

The HMM state series and preferred model variants were sensitive to the 

parameterisation of the small-scale site-to-site correlation structure. Several 

parameterisations of the small-scale Gaussian correlation were trialled, namely Fitted 

Correlation, Exponential Decay Correlation, Empirical and Zero Correlation. 

Significantly, it was shown that annual rainfall data outliers can have a large effect on 

inference for a model that uses Gaussian distributions.  

The practical value of this modelling is demonstrated by the conditioning of the event 

based point rainfall model DRIP on the hidden state series of the HMM variants. Short 

timescale models typically underestimate annual variability because there is no explicit 

structure to incorporate long-term persistence. The two-state conditioned DRIP model 

was shown to reproduce the annual variability observed to a greater degree than the 

single state DRIP.   
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Notation 

Probability Notation 
 

( )p ⋅  generalised probability density function 

( )|p ⋅ ⋅  generalised conditional probability density function 

( )P ⋅  generalised event probability function 

�  general term for model parameters vector with support ∈ Θ�  
y  general term for the observed data 

d
ty   observed data scalar at time t   and site d  

ty   observed data vector at time t  over d  sites, ( )1,..., d
t t ty y=y    

1
TY   general term for the set of observed vector data, ( )11 ,...,T

T=Y y y  
M   general term for model hypothesis 
y  empirically estimated mean of data ( )11 ,...,T

TY y y=  
2s  empirically estimated variance of data ( )11 ,...,T

TY y y=  
 
 
Bayesian modelling notation 
 

( )|p M�  prior distribution of parameters given model hypothesis M  

( )| ,p M� y  posterior distribution of parameters given data y  and model hypothesis 

M  
( )| ,p My �  likelihood of data given parameters �  and model hypothesis M , 

alternatively written as a function ( )| ,f My �  

( )|p My  marginal likelihood of data given model hypothesis M  

( )|p M y  posterior model hypothesis M  probability given data y  
 
 
MCMC Sampling Notation 
 

( )i
�  MCMC parameter sample i  
ns  number of samples 
nm  number of models 

( )* ( 1)| i
iJ −� �  proposal/jump distribution of parameters *

�  given previous sample 

location ( 1)i−
�  

 
Hidden State Markov Model Notation 
 
P  Markovian state transition probability matrix 

ijp  regional state transition probability that represents the probability of 
moving from state i  to state j  where ,i j W,D∈  
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W  wet state  
D  dry state  
tr  regional hidden state at time t  

1
TR  regional hidden state time series ( )11 ,...,T

TR r r=  

t

site
rµ  site mean at time t  for given state hidden state tr  

t

site
rσ  site standard deviation at time t  for given state hidden state tr  

ijρ  correlation coefficient between sites i  and j  

�  correlation matrix of size d d× , ij� �= ρ� ��  , 1,...,i j d=  

tr
�  site mean vector of size d  at time t  for given regional state tr  

tr
�  site covariance matrix at time t  of size d d×  for given regional state tr  

λ  exponential correlation decay range parameter ( )� expij ijdist λ= −  where 

ijdist  is the distance between sites i  and j  
2τ  microscale variance, nugget effect 

 
 
Switch Hidden State Markov Model Notation 
 
SP  state switch probability matrix  

site
ijsp  site state switch probability that represents the probability of moving 

from regional state i  to site state j  where ,i j W,D∈  for site 

{ }1,...,site d∈ , 
ij

sitesp� �= � �SP  
site
ts  site hidden state at time t  for site { }1,...,site d∈  

ts  site hidden state vector at time t  over d  sites, ( )1 2, ,..., d
t t t ts s s=s  

t

site
sµ  site mean at time t  for given state hidden state ts  

t

site
sσ  site standard deviation at time t  for given state hidden state ts  

tS�  site mean vector of size d  at time t  for given regional state vector tS  

tS�  site covariance matrix at time t  of size d d×  for given regional state 

vector tS  
 
 
Regional Hidden State Markov Model Notation 
 

reg
ijp  regional state transition probability that represents the probability of 

moving from state i  to state j  where ,i j W,D∈  for region 

{ }1,...,reg k∈  where k  is the number of regions. For HMM and SHMM 

1k = . 
ij

regp� �= � �P  
reg

tr  regional hidden state at time t  for region { }1,...,reg k∈  

tr  regional hidden state vector at time t  over k  regions, ( )1 2, ,..., k
t t t tr r r=r  
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sitereg  region into which site is partitioned, { }1,...,reg k∈  

H  site-region partition vector over d  sites, ( )1 2, ,..., dH reg reg reg=  

t

site
rµ  site mean at time t  for given state hidden state tr  

t

site
rσ  site standard deviation at time t  for given state hidden state tr  

tr�  site mean vector of size d  at time t  for given regional state vector tr . 

tr�  site covariance matrix at time t  of size d d×  for given regional state 

vector tr . 
 
 
Probability Distribution Notation 
 

( )0,1Uniform  uniform probability distribution with limits 0 and 1  

( ),N � �  multivariate Gaussian distribution with dimensions depending on 

context, mean vector � , symmetric positive definite covariance matrix  
�  

( ); ,Nf y � �  multivariate Gaussian density function for random vector y  with 

dimensions depending on context, given mean vector �  and symmetric 

positive definite covariance matrix  � . Also written as ( ),Ny � ��  

( )Φ ⋅  Standard cumulative Gaussian probability 

( )2 2� ,Inv � s�  scaled inverse-chi-square distribution with degrees of freedom �  and 

scale 2s  
( )2

22 ; ,
Inv

f x s
− χ

ν  scaled inverse-chi-square density for scalar random variable 2x  with 

degrees of freedom �  and scale 2s . Also written as ( )2 2 2� ,x Inv � s−�  

( ),Beta α β  Beta distributions with parameters α  and β  

[ ]I ⋅  An indicator function with value 1 when the statement contained within 
is true 

( ),Gamma α β  Gamma distribution with shape α  and inverse scale β  
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 Chapter 1 - Introduction 

Chapter 1 Introduction 

The design of dams, floodways and other infrastructure affected by rainfall would be a 

straightforward task if there existed records long enough to capture the inherent 

temporal variability caused by climate influence. In flood studies for example, assuming 

future climate is similar to the past, a rainfall-runoff model using historic rainfall data 

could be used to simulate the range of flood scenarios that could occur in the future. 

However, climate variability is a dynamic process, with large scale effects occurring 

over years, decades and centuries. Given that the maximum length in most regions for 

daily rainfall in Australia is around 100 years, and for pluviograph (6 minute) data 

around 30 years, it is not likely that this source of variability has been adequately 

sampled. Consequently, predictions and simulations using only this data may 

overestimate the degree of certainty with which the simulations are made. To overcome 

the limitations of short historic records stochastic models calibrated to historic data are 

used to provide insight into the range of events that can occur over planning horizons. 

1.1 Modelling the Influence of Climate on Rainfall 

The current generation of stochastic point rainfall models operating at daily and sub-

daily timescales do not adequately capture the variability present in Australian 

hydroclimatic time series. In particular, mechanisms to incorporate inter-annual 

variability and persistence are rarely accounted for. Of the models that do account for 

this persistence, the spatially varying nature of this long-term persistence has not yet 

been addressed. The lack of current modelling techniques to explicitly accommodate 

this spatially non-homogeneous persistence provides the motivation for the work 

undertaken in this thesis. 

Past modelling approaches (see section 2.4) have generally focussed on modelling 

either short-term spatially homogeneous climate influences or long-term climate 

influences at a point. However, long-term variation of rainfall induced by a non-

homogeneous spatial climate influence has not been modelled explicitly. Although long 

term climate influences with varying spatial effects (e.g. El Niño Southern Oscillation) 

have been identified, the current generation of stochastic models does not contain a 
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conceptual mechanism to incorporate such an effect. This may be considered a 

shortcoming of current approaches. 

Given there is a need to simulate short-timescale rainfall for the design of water-based 

infrastructure, and that rainfall is influenced by long-term variability of climate, a new 

spatial framework for downscaling long-term persistence into rainfall simulation down 

to 6-minute time scales is desired.  

1.2 Objectives of Thesis 

It is the main goal of this thesis to address the spatially varying long-term effects of 

climate on rainfall over a range of timescales ranging from sub hourly to decadal 

timescales. 

This overall goal is broken down into three objectives; 

� To incorporate a statistically rigorous parameter and model uncertainty 

framework. 

� To develop models that can identify spatially non-homogeneous climate 

persistence in rainfall on timescales greater than a year, and can then be used to 

condition smaller timescale models used in design; and 

� To condition hierarchically a smaller timescale stochastic rainfall model on the 

persistence structure identified by the larger timescale persistence model. 

1.3 Thesis Outline 

Chapter 2 reviews methods of modelling the influence of long-term climate variability 

on rainfall. Particular emphasis is directed at the two-state hidden Markov model 

(HMM) applied by Thyer (2001). This model has been shown to capture inter-annual 

persistence in annual rainfall in Australia. However, the current HMM is limited in that 

it assumes a common climate influence across all sites used in an analysis. Can sites far 

away from each other be assumed to be under the same climatic control? A 

generalisation of the HMM is required to accommodate the spatially varying effects of 

climate. 
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Because generalisation of the HMM implies a choice between models, an objective 

model selection method will need to be employed to see if the generalisations are 

worthwhile. The first objective of this thesis, to use a model framework that coherently 

incorporates parameter and model uncertainty, is investigated in Chapter 3. The model 

selection method used in this thesis, Bayesian model selection, allows the simple 

comparison of model probabilities, whilst also maintaining the advantage of 

incorporating parameter uncertainty. This general modelling framework has been rarely 

used in water resource studies. Therefore in Chapter 3 this framework is explained in 

detail, with a simple case study demonstrating some of the limitations of Bayesian 

model selection, along with comparison to some other model selection criteria. The 

Bayesian model selection method is applied in subsequent chapters to select between 

competing model hypotheses. 

Chapter 4 proposes two generalisations of the multiple-site HMM, the Switch HMM  

(SHMM) and the Regional HMM (RHMM). The Switch HMM allows individual sites 

to exhibit anomalous behaviour relative to the overall climate control, while the 

Regional HMM conceptualises annual rainfall as being controlled by a regional climate 

state with each site being assigned to a particular climate region. These formulations 

were motivated by the observation that not all sites are affected to the same degree by 

the same climatic oscillations; as sites become more separated they are less likely to be 

influenced by the same climate controls. These generalisation address the second 

objective, by allowing spatially non-homogeneous persistence effects.  

Chapter 5 details the application and comparison of the HMM generalisations to four 

case studies located around Sydney and Brisbane in Eastern Australia. Each case study 

consists of four sites, with Bayesian model selection being used to determine the most 

appropriate model structure for each site grouping.  

Chapter 6 addresses the third objective of the thesis. A short timescale event based 

rainfall model, DRIP (Disaggregated Rectangular Intensity Pulse), is conditioned on the 

state series of the calibrations produced in Chapter 5. The objective is to demonstrate 

that the conditioning of models like DRIP on climate states persisting over longer time 

scales can improve their ability to simulate variability of rainfall at time scales of a year 
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or longer. This method is applicable not only to DRIP, but to any small timescale event 

based model. 

A summary of the conclusions is presented in the final chapter, Chapter 7, following 

which future directions of research are discussed. 
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Chapter 2 Modelling Long-term Persistence in 

Rainfall 

2.1 Introduction 

Modelling the long-term interaction of climate and rainfall (at short and long time 

scales) is a relatively new endeavour. Up until the last decade, apart from seasonal 

variations, short-timescale rainfall was generally modelled as a stationary process. 

Climate was not modelled as affecting rainfall from year to year explicitly. For the 

annual rainfall process also, simple models attempting to reproduce key statistics such 

as auto-correlation were used, whereas the underlying physical processes governing the 

variability were ignored. However, with increasing computational power, more complex 

interactions have been investigated, with a greater physical basis. Generally, these 

models have a hierarchical structure, with longer-term climate variations influencing 

shorter-term rainfall amounts in some way. 

From a modeller’s point of view the problem is to identify the largest sources of 

variability, and try and incorporate them into his/her prospective model. This must be 

achieved in a way that marries the spatial and temporal variability in a coherent manner. 

This chapter introduces the stochastic modelling of the interaction of climate and 

Australian rainfall. Empirical evidence of inter-annual persistence in hydroclimatic 

processes is presented first. The remainder of the chapter provides a critical review of 

the previous attempts at climate-rainfall modelling, and draws some links between the 

most successful of these. Models calibrated to daily rainfall are surveyed first, followed 

by models calibrated to annual data.  

One particular annual rainfall model, the two-state hidden Markov model (HMM) used 

by Thyer (2001), is discussed in detail. Although this model has close links to most 

other climate-rainfall models, this model does differ in the respect that it attempts to 

model long-term persistence in climate rather than the rainfall itself. As demonstrated 

by Katz and Zheng (1999), this annual HMM also has applicability to smaller timescale 

models. However, there are potentially serious parameter identifiability issues when 

using single site data. The use of multiple sites can help to overcome these identification 
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problems. However, multi-site approaches also have drawbacks regarding the 

assumptions made to substitute space for time. Some extensions to the multi-site HMM 

are proposed to address these drawbacks. These extensions define the major focus of the 

remainder of the thesis. 

2.2 Long- and Short-term Climate Variability 

Climate is defined in the Oxford English Dictionary (2000) as the ‘Condition (of a 

region or country) in relation to prevailing atmospheric phenomena, as temperature, 

dryness or humidity, wind, clearness or dullness of sky, etcetera, especially as these 

affect human, animal, or vegetable life.’. It is in this sense, namely the integration of all 

characterising atmospheric phenomena, with which the term climate will be used. 

Regarding the timescales over which climate variability operates, short-term climate 

variability, as used in this thesis, will refer to timescales of the order of days to months. 

Long-term refers to years, decades and possibly longer timescales. 

Persistence is defined here as the occurrence of runs of high or low rainfall years 

relative to the long-term mean that are longer than what would be expected from an 

independent annual process. This differs to the mathematical definition of persistence 

provided by Beran (1994 p.6-7) related to the sum of correlations over all lags being 

infinite. Strictly speaking, the models presented within this thesis are not long-range 

dependent. 

Many hydrological studies have focussed on reproducing a statistic related to the 

cumulative departures from the mean, the rescaled adjusted range (Hurst, 1951). This 

statistic, often used in the definition of long-term persistence, is not used here as it can 

require very long records for accurate estimation. As we are dealing with records of 

length around only 100 years, it is unlikely that the Hurst coefficient (see Bras and 

Rodriguez-Iturbe, 1985 p.211) could be accurately estimated.  

It is an objective of this thesis to provide a stochastic mechanism for long-term climate 

persistence within a rainfall model. Before this objective is addressed, some evidence 

for this long-term hydroclimatic persistence is presented.  
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2.2.1 Evidence of long-term climate variability and persistence within hydro-
climatological time series  

‘Empirical evidence of many hydro-climatological data shows temporal variability 

involving trends, oscillatory behaviour, and sudden shifts’ (Sveinsson et al., 2003 

p.489). In particular, the quasi-cyclic ENSO phenomenon has been well documented as 

having a strong influence on Australian rainfall and runoff (eg. McBride and Nicholls, 

1983, Chiew et al., 1998, Chiew and McMahon, 2003). The impact of ENSO is not 

consistent and varies with time (Nicholls et al., 1996, Kane, 1997). 

Within sea surface temperature indices - the Interdecadal Pacific Oscillation (IPO) and 

the Pacific decadal Oscillation (PDO) - sudden shifts occur decades apart (Mantua et 

al., 1997, Power et al., 1999). Indeed, there is some evidence that ENSO frequency and 

strength are modulated by these indices (Power et al., 1999), with consequences for 

flood and drought risk (Kiem et al., 2003). Within longer length series, such as ice core 

measurements in Greenland (Taylor, 1999), and coral core records related to runoff 

from the Burdekin river in Queensland (Isdale et al., 1998), there is evidence of long-

term periods of persistence in different climatological modes. 

2.2.2 Evidence of persistence within annual rainfall series in Eastern Australia  

Specifically for Eastern Australia, the case study area for this thesis, inter-annual 

persistence has been identified within rainfall records (Pittock, 1975, Cornish, 1977, 

Lough, 1993). All of these studies identify below average rainfall periods from the early 

1900’s until the late-1940s, followed by a period of above average rainfall. These 

studies typically focus on two distinct periods, 1900-1945 and 1946-1980 (depending 

on the sites used and when the study was produced). The study of Lough (1997) 

identifies some evidence within Queensland (north Eastern Australia) for switching 

back to a below average rainfall during the period 1975-1995, possibly linked to the 

increased incidence of El-Niño events during this time period (Trenberth and Hoar, 

1996). However, there is further empirical evidence of persistence within and outside 

the two dominant periods. 

A plot showing the annual rainfall cumulative departures from the mean for 13 sites on 

the Eastern Coast of Australia is presented in Figure 2.1. These annual rainfall series are 

described and used in the case studies presented in Chapter 5. Such a plot is typically 
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used to empirically diagnose persistence within time series (e.g. Pittock, 1975). 

Consistent periods of negative slope indicate that the rainfall is persistently lower than 

average, and vice versa for positive slope. Within some of these series (e.g. Mount 

Victoria/Blackheath, Brisbane, Moruya Heads), there appears to be evidence of 

distinctly wet and dry periods. Within other series (e.g. Cape Moreton, Miles), this 

prima facie evidence is not as persuasive.  
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Figure 2.1 Annual rainfall cumulative departures from the mean (May-April water year) 

The cumulative departure from mean series show some similarity in the timing when 

the changes in slope occur, with the slope changing from positive to negative for the 

majority of series around 1900, and from negative to positive around 1945. This 

provides some evidence for the hypothesis of a regional controlling climate, with 

changes in climate affecting rainfall in a region in a similar way. 

Overall, from the cumulative departure from the mean plots there appears to be some 

evidence of annual rainfall being modulated by a controlling climate structure. 

However, each site is influenced to differing degrees. These observations provide 

additional evidence of long-term persistence within Eastern Australian rainfall. 

However, the purpose of this thesis is not to identify evidence of such persistence within 

Australian rainfall, ample studies have already rendered evidence demonstrating 
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persistence. The aim of this work is to investigate stochastic mechanisms that can be 

used to simulate such observed phenomenon.  

2.2.3 Implications of persistence 

Inter-annual persistence has implications for drought security, water resource 

management and agriculture. Franks and Kuczera (2002) demonstrate that the 

stationary climate assumption implicit in the estimation of design floods may cause very 

significant under-/over-estimation of flood magnitude, which in turn means that the 

associated project could be exposed to a greater risk/cost than desired. The assessment 

of drought impact is also affected by the assumption of a stationary climate. The 

mechanisms by which long-term climate variability physically influences rainfall 

amounts are becoming better understood, with links between climate indices, 

atmospheric circulation and rainfall being developed (e.g. Folland et al., 2002). 

However, their influence on the spatial distribution of rainfall is not yet well understood 

(see Thyer, 2001 for a discussion). In the interim period, a stochastic model linking 

climate and rainfall is required. 

Typically at the annual timescale, hydro-climatological processes have not incorporated 

mechanisms for simulating long-term persistence, despite the growing empirical 

evidence indicating persistence. However, there have been several attempts at capturing 

this inter-annual persistence, the focus of the remainder of this chapter.  

2.3 Terminology and Modelling Framework 

Before the different methods of modelling climate influence on rainfall are described, 

some terminology, notation and a general modelling framework are introduced under 

which all models can be discussed and compared.  

2.3.1 Data, random processes, probability and stochasticity 

We are interested in modelling a spatio-temporal data field denoted ( )11 ,...,T
T=Y y y , 

where ( )1,...,= td
t t ty yy  is the set of observations taken at time t  over td  sites. The T  

superscript within the data matrix 1
TY  denotes the total number of time periods, while 

the subscript denotes the initial timestep that is being considered. This double scripting 

on Y  is used in model formulation (e.g. Section 3.4.1), where subsections of the overall 
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data matrix 1
TY  are required. Most generally, the number of sites td  can vary from 

timestep to timestep, however, for the remainder of this thesis the number sites will be 

equal over all timesteps, denoted d .  

If realisations of this data through time are considered random, rather than being purely 

deterministic, they are modelled as a stochastic process (Box and Jenkins, 1976 p.7). 

Given that the data are considered a random process, the data has an associated 

probability density function ( )1 | ,T
Mp MY �  given a model hypothesis M  and an 

associated set of unobserved parameters M�  (Bras and Rodriguez-Iturbe, 1985 p.2). The 

subscript on the parameter vector is used to emphasise that the parameter vector is 

dependent on the model M . This subscript is omitted for simplicity in the following 

text, the exception being where multiple models are being discussed.   

2.3.2 Probability Notation 

As we are describing and dealing with stochastic processes throughout this thesis, 

notation is required to denote probability quantities. The notation ( )|p a b  refers to the 

conditional probability distribution of a  given b , while ( )p a  denotes a marginal 

distribution of a . The joint probability of observing a , b  and c  can be calculated 

according to conditional probability in terms of the factorisation 

( ) ( ) ( ) ( ), , | , |p a b c p a b c p b c p c= . As was done in Gelman et al. (1995 p.7), the same 

notation is used for continuous density functions and discrete probability mass 

functions. In some cases, we use ( )P ⋅  to denote the probability of an event (for 

integrated discrete or continuous density functions), as opposed to a continuous density.  

2.3.3 Stationary and Non-stationary processes 

‘A hydrologic time series is stationary if it is free of trends, shifts, or periodicity 

(cyclicity). This implies that the statistical parameters of the series, such as mean and 

variance, remain constant in time. Otherwise the series is nonstationary.’ (Salas, 1993 

p.19.5). Strict theoretical definitions of stationarity exist (eg. Bras and Rodriguez-

Iturbe, 1985 p.5). However, it is in this less formal sense that the terms stationary and 

non-stationary will be used in this thesis. Models of daily rainfall would typically be 

non-stationary over the year due to seasonality. The same rainfall model aggregated to 
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the annual timescale could be stationary in that the annual values vary around a 

stationary or time invariant mean. Likewise models showing inter-annual shifts (non-

stationarity) in mean may be considered stationary over longer periods. Thus most 

systems can be considered stationary or non-stationary depending on the period over 

which the process is observed. 

2.3.4 Persistence, Overdispersion and Downscaling 

It is an objective of this thesis to incorporate long-term persistence into a short-

timescale rainfall model DRIP. It is hypothesised that the current underestimation of 

annual variance within models like DRIP, is due to persistence at longer-term 

timescales not being considered. This underestimation of annual variance, termed 

overdispersion (Katz and Zheng, 1999) can be addressed by downscaling.  

Downscaling refers to the process of overlying a model of larger-spatial scale (that may 

incorporate long-term persistence) over a local short-timescale model (Bellone, 2000). 

In this thesis downscaling will be implemented by conditioning the DRIP point rainfall 

model on the output series of the regional two-state HMM. The two-state HMM 

conditions local rainfall characteristics on a conceptual regional climate influence. Such 

conditioning is typical of a broad range of models used in the environmental sciences: 

hierarchical models. 

2.3.5 Hierarchical modelling framework 

Of the spatio-temporal models used in hydrology and environmental science, many fall 

within the following broad definition. The model is broken into three stages: 

 Stage 1. Data Model:     ( )| ,p data process parameters  

 Stage 2. Process Model:     ( )|p process parameters  

 Stage 3. Parameter Model:     ( )p parameters  

This breakdown has been used by various authors (Berliner, 1996, Wikle, 2003) in 

describing hierarchical models. Indeed, breaking a model into a series of conditional 

models, coherently linked to one another through conditional probability, defines 

hierarchical modelling (Wikle, 2003). The first stage describes the observational process 
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given the process of interest, and parameters that describe the data model. The second 

stage describes the process, conditional on other parameters. The final stage accounts 

for variability in the process model parameters. 

The data model generally is used for representing measurement error corrupting the 

observed process. Of course this data model is problem dependent. In this study the 

measurement error is judged to be small (as the majority of data was obtained from 

previous studies indicating its high quality – see Section 5.2) compared with process 

variability and will thus be disregarded. In the resulting analysis, this choice is 

challenged – as discussed in Section 5.6. The process model is usually the most critical 

step in constructing a hierarchical model, with multiple conditional sub-stages usually 

being employed to describe process dependencies. The process in the context of this 

study is the interaction of climate and rainfall. The parameter (uncertainty) model will 

be discussed in the following chapter. For a fuller description of hierarchical models 

and a general framework for spatio-temporal process models, see Wikle (2003). 

2.3.6 Process model: Temporal dependency 

The ability of rainfall models to reproduce long-term persistence of rainfall will depend 

on the assumptions made within the model regarding the conditioning of each year’s 

rainfall on previous years. Sometimes it is assumed that each year’s rainfall is 

independent of others yielding:  

 ( ) ( )
( )

1

1

| | ,

| ,

T

T

t
t

p process parameters p M

p M
=

=

= ∏
Y �

y �
 (2.1). 

Here �  represents the set of unobserved parameters associated with model M , and ty  

is the rainfall observed in year t . In such a model, there is no mechanism to produce 

long-term persistence. On other occasions, rainfall is related to that which has occurred 

in the past. A common method is to condition this year’s rainfall on the year 

immediately preceding it:  

 ( ) ( )
( ) ( )

1

1 1,
2

| | ,

| , | ,

T

T

t t
t

p process parameters p M

p M p M−
=

=

= ∏
Y �

y � y y �
 (2.2). 
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The lag one auto-regressive model (Srikanthan and McMahon, 1985) is an example of 

such a model. Such models have been used quite widely as this allows the natural 

assumption that the immediate past state of an environmental process affects the current 

state. A generalisation of this model is to introduce a latent variable (or state) tr , with 

the rainfall being considered to be a degraded observation of the latent process. This 

generic family is more widely termed state-space models. Dynamic models (of which 

the Kalman filter is a member – see Kalman, 1960, Wikle and Cressie, 1999) is an 

example of such a model. Hidden Markov models are used to describe such processes 

where tr  is a discrete random variable, with the individual terms of (2.2) being: 

 ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1

1,

1 1 1 1

1 1 1 1 1 1

1 1 1

| ,

, | , , , | , ,

| , , , , | , , , | , ,

| , , | , , | , ,

t t t t

t t t t

t t t t

t t

t t t t t t
r R r R

t t t t t t t t t
r R r R

t t t t t t
r R r R

p M

p r r M p r M

p r r M p r r M p r M

p r M p r r M p r M

− −

− −

− −

−

− − − −
∈ ∈

− − − − − −
∈ ∈

− − −
∈ ∈

� �
= � �

	 

� �

= � �
	 

� �

= � �
	 


� �

� �

�

y y �

y y � y �

y y � y � y �

y � � y �
1

�

 (2.3). 

tR  signifies the possible states tr  can take. This calculation will be discussed in greater 

detail in the Chapter 3. However, the final line shows the significance of HMM 

modelling, with the rainfall ty  only being dependent on the current state tr . The 

dependence through time is defined by the ( )1| , ,t tp r r M− �  term. 

These models may be generalised further to be dependent on greater lags of rainfall. 

However, this natural dependency on the previous timestep (lag one) is often assumed 

in modelling such environmental processes (eg., Srikanthan et al., 2002, Sveinsson et 

al., 2003, Wikle, 2003). The question that arises upon applying these models is whether 

they are able to reproduce the long-term persistence that is apparent within hydrological 

data. We use this process model framework to interpret previous attempts at 

incorporating the influence of climate on rainfall. 
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2.4 Stochastic Rainfall Models: The challenge of linking short and 

long timescales 

The following section overviews some previous efforts at downscaling the influence of 

climate on rainfall. As comprehensive reviews of stochastic rainfall (and weather) 

generation techniques have been given before (see Wilks and Wilby, 1999, Srikanthan 

and McMahon, 2001), an exhaustive study is not undertaken. Rather this section focuses 

on the previously described methods for simulating variability induced by climate on 

rainfall, at both daily and annual timescales. As noted in both of the previously 

mentioned reviews, ‘conventional weather generation techniques often fail to capture 

wholly inter-annual variability’. Previous methods are surveyed to assess their 

applicability to addressing this inter-annual variability.  

2.4.1 Daily rainfall models 

Due to the wide availability of weather data at the daily timescale, and the abundance of 

impact models driven by daily rainfall input, daily rainfall models are by far the most 

common model type (Wilks and Wilby, 1999). These stochastic models of precipitation 

have until recently considered precipitation in isolation from the atmospheric processes 

that drive it. However, methods introduced in the last decade (eg. Hay et al., 1991, 

Bardossy and Plate, 1992, Katz and Parlange, 1993, Hughes and Guttorp, 1994) have 

attempted to address this by conditioning on, or correlating to, synoptic atmospheric 

patterns or indices.  

The model formulation is typically Markovian (or state-space), with an atmospheric 

‘weather state’ tr  at time t , having a corresponding rainfall distribution coupled with it. 

Within these earlier studies the atmospheric state tr  was generally considered a known 

quantity, given from previous analysis. Such downscaling models require the definition 

of weather states, which are associated somehow with synoptic atmospheric indices. A 

problematic issue in the past has been the division of rainfall data into states according 

to the atmospheric data (Bellone, 2000 p.11), with subjective and ad hoc measures 

usually employed to determine the order and occurrence of states.  

Hughes et al. (1994) introduced the non-homogeneous Markov model (NHMM) for 

relating precipitation occurrence at multiple rain-gauge stations to broad scale 
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atmospheric circulation patterns or states. Rather than requiring a priori division of the 

rainfall into states according to the atmospheric data, this approach enabled the 

modulation of the Markov model parameters by the atmospheric variables. The order of 

the model was chosen (via model selection) as a product of model calibration. Charles 

et al. (1999) and Bellone et al. (2000) extend the precipitation occurrence NHMM to 

include precipitation amounts.  

Although such downscaling models are potentially quite useful in water resource 

studies, a drawback of NHMM’s is that there is presently no suitable method for 

simulating long-term atmospheric data (Thyer, 2001). The most common method of 

atmospheric simulation employs General Circulation model’s (GCM). Unfortunately, 

these methods are currently computationally prohibitive. As the NHMM requires input 

of atmospheric data, this approach is unsuitable for long-term water resource 

applications. Another drawback is that the level of uncertainty associated with both the 

calibration (parameter uncertainty) and the GCM itself (model uncertainty) are currently 

not accounted for within predictions, estimations and other expectations output from the 

GCM.  

Order selection is a fundamental task when dealing with HMM’s. Order selection refers 

here to the choice of number of possible hidden states. As the process is unobservable, it 

is often unknown a priori how many states should be used. Model selection techniques 

such as the Bayesian Information Criterion (BIC - see Chapter 3) are used to discern 

between models (Katz, 1981). Fewer states are less complex and require less 

computation time. However depending on the modelling timescale used, and the 

number of sites used, differing numbers of states can be justified (see Bellone, 2000 

chapter 3 for a simulated case study demonstrating these effects).  

Apart from climate downscaling models that require the input of atmospheric 

measurements as forcing variables, another very similar modelling technique has been 

used to incorporate the inherent variability of rainfall over time. These models have 

essentially the same structure as the downscaling models discussed above, except that 

there are no atmospheric variables used, only rainfall. This approach reduces the 

reliance on being able to simulate long-term series of atmospheric variables. 
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An example of this approach is that of Katz and Zheng (1999). They note that stochastic 

models fitted to time series of daily precipitation commonly do not include a component 

that explicitly accounts for inter-annual variation. In a method similar to that of Thyer 

(2001), they attempt to address this by overlaying an annual two-state HMM on a daily 

rainfall model. It is shown through model selection that using an annual two-state HMM 

is superior to a single state process. They postulate that this is due to the effect of low 

frequency oscillations on rainfall. However, determining whether the variability is due 

to low or high frequency oscillations is left as an open question. 

Another possible solution modelling this low/high frequency variability is to use 

Dynamic Linear Models (DLM). These are a continuous state space version of the finite 

state HMM, and have been used by Zheng (1996) and others to model daily 

temperatures. But as Katz and Zheng (1999) note, due to the intermittency of rainfall (at 

the daily timescale) these models cannot be directly applied. In other words, dealing 

with persistent dry periods is difficult. Sanso and Guenni (2000) sidestep this issue by 

using 10 day accumulations of Venezuelan rainfall, and apply a DLM. Although the 

model clearly has a mechanism with which to incorporate non-stationarity and 

persistence in rainfall (as the underlying dynamic state parameters can persist from year 

to year around relatively dry or wet modes) the ability of the model to capture inter-

annual variability was not examined in that study.  

2.4.2 Annual hydro-climatological models 

Until recently, the design of annual rainfall models has generally ignored the physical 

processes causing year-to-year variation, with models being focussed on reproducing 

statistical characteristics of the data. Several variants of auto-regressive moving average 

(ARMA) models developed by Box and Jenkins (1976) fall into this category. The 

prevalence (Salas, 1993) of these models is a testimony to their robust yet simple 

nature. One variant, the lag one autoregressive (AR1) model has found wide use for 

annual rainfall generation throughout Australia (Srikanthan and McMahon, 2001).  

Srikanthan et al. (2002) conducted a review of annual rainfall models assessing the 

AR1 model (Srikanthan and McMahon, 1985) against the newly introduced HMM over 

44 key sites spread across Australia. They found that the AR1 model could not be relied 

upon to satisfactorily reproduce 2 and 3-year low rainfall sums if parameter uncertainty 
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was not taken into consideration. Hence, assessment of drought security using the AR1 

model may be compromised. 

Autoregressive processes are quite abstract in nature, in that it is difficult to 

conceptualise the process by which autocorrelation occurs. How is this year’s rainfall 

affected by a percentage of last year’s rainfall? Other stochastic models have 

conceptualised the hydrologic process in more physically meaningful ways. Generally, 

these models conceptualise climate changing in some way, and consequently, 

influencing the rainfall amounts. 

One such example is the change-point model (Perreault et al., 2000a).  These models 

conceptualise the rainfall mean (and/or variance) of the process varying when a change-

point has been reached. The locations of the change-points are also calibrated 

parameters. Closely related are the shifting mean models employed by Sveinsson et al. 

(2003) and Fortin et al. (2002, 2003). Rather than an individual change-point being 

modelled, the mean is allowed to shift multiple times by differing amounts. The 

frequency of mean shifting is also calibrated. These shifting mean models can also be 

seen to be a generalisation of the DLM’s mentioned in the previous section. In that case, 

the mean shifted at every time-step. In this case the time between mean shifts is 

sampled from a geometric distribution. 

Another model closely related to the shifting mean model (see Fortin et al., 2002) is the 

two-state HMM introduced by Thyer (2001). This model conceptualises the climate as 

being in two states, relatively wet, or relatively dry, with different rainfall distributions 

according to state. Persistence in each state is modelled according to Markovian 

transitions, with each year’s state only being dependent on the previous year. This 

model has shown promise in identifying regional persistence in climate throughout 

Australia (Srikanthan et al., 2002). However, as detailed later in this chapter, the HMM 

framework requires modification if it is to be used routinely. 

2.4.3 Point Process models 

There is an extensive literature related to point process models (eg. Waymire et al., 

1984, Cowpertwait and O'Connell, 1997). These are stochastic models with a structure 

chosen to simulate the observed rainfall process much more closely than the already 
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described models. These models, like most other rainfall models, typically have not 

accounted for non-stationarity and persistence other than that induced by seasonal 

variations. As there have not been any attempts (to the author’s knowledge) to 

incorporate this non-stationarity, these models are not reviewed. 

However, one model of this genre is singled out. The Disaggregated Rectangular 

Intensity Pulse (DRIP) model of Heneker et al. (2001) is an event based point process 

model calibrated to pluviograph data. As with other models of this genre, DRIP did not 

incorporate inter-annual non-stationarity. It is an objective of this thesis to develop a 

method for incorporating long-term persistence induced by climate into such a model. 

The DRIP model will be discussed in greater detail where it is applied in Chapter 6. 

2.4.4 Choice of time dependency and inter-annual persistence 

The previous section has reviewed various efforts at incorporating the effects of a non-

stationary climate on rainfall. Of the daily rainfall modelling approaches, weather state 

models and dynamic linear models allow the influence of day-to-day dependency to be 

included with links to atmospheric patterns. Annual models (necessarily) focus on 

dependency at greater timescales, with HMM, change-point and shifting mean models 

being used to match empirical characteristics of a changing climate at annual 

timescales.  

Apart from the work of Katz and Zheng (1999), there has been little work addressing 

climate effects of inter-annual persistence on smaller timescale models. This thesis 

attempts to blend the annual and daily approaches - using a current annual weather state 

model, the HMM, and overlaying it on a smaller timescale rainfall model DRIP, thereby 

downscaling the inter-annual persistence modelled by the HMM, into the smaller event 

based rainfall model. Although conceptually similar to the work of Katz and Zheng 

(1999), this independently developed approach differs in that the state series is derived 

from annual rainfall records and hence is independent of the short timescale data. The 

resulting state series of the HMM calibration is used to condition the DRIP model. It is 

noted that the state series conditioning method used for DRIP represents a general 

framework which can be used for downscaling to any small timescale model for which a 

likelihood function can be evaluated. 
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The separate calibration of the HMM allows regional (multi) site state identification to 

be addressed. This multi-site approach allows identification of inter-annual persistence, 

whilst also accounting for spatial variation. Specifically, the generalisations of the 

HMM model allow different state series to be identified by different sites, thus 

attempting to match the empirically observed phenomenon of different regions being 

affected to differing degrees by changes in climate regime.  

2.5 Two-State Hidden Markov Model 

The HMM (as mentioned within section 2.4.2) has successfully been used to model 

annual rainfall at a range of sites throughout Australia (Srikanthan et al., 2002) – 

including 2 and 3-year low rainfall sums. Therefore, the two-state HMM as applied by 

Thyer (2001) is the starting point of this study. Thyer’s (2001) implementation is based 

on the algorithm presented by Chib (1996) for a HMM, while Bengio (1999) provides a 

general review of various HMM’s.  The HMM is described here in detail following 

Thyer (2001). Some limitations of this multi-site HMM (in this context) are presented in 

the following section (2.6), whilst the HMM calibration algorithm (as applied in this 

thesis) is detailed in section 3.4. 

2.5.1 Parametric framework of the HMM 

The two-state HMM framework, illustrated in Figure 2.2, assumes the climate is in one 

of two states: wet or dry.  Each state has an independent annual rainfall distribution, 

assumed to be Gaussian. The persistence in each state varies according to the state 

transition probabilities. For example, the expected residence time in the dry state is 1/ 

P(Dry→Wet).  This provides an explicit mechanism to simulate the variable length wet 

and dry rhythms observed in Australian rainfall data. 

 

WET 
STATE 

DRY 
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P(Wet�Dry) 

P(Dry�Wet) 

P(Dry�Dry) 
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Figure 2.2   Two-state HMM Conceptual Diagram 



20 

 Chapter 2 – Modelling Long-term Persistence in Rainfall 

In more formal terms, the regional climate state at year t, tr , is modelled by a 

Markovian process: 

 ( )-1 ~t tr r Markov P  (2.4), 

where P  is the state transition probability matrix defined by:  

 ( )1 , ,ij t tp p r j r i i j W D−� �= = = = =� �P  (2.5). 

As we cannot observe which state a particular site is in any year it is necessary to infer 

the climate state time series, ( )1 1 2, ,...,T
TR r r r= , using the HMM.  This series is included 

as a latent parameter requiring estimation.   

It is assumed that these transition probabilities are stationary over time. Depending on 

the climate state simulated by the Markovian process at time t, different Gaussian 

rainfall distributions are used to simulate a vector, ty , of rainfall amounts for d multiple 

sites according to:  
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� �
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W W
t

D D

� �
y

� �
 (2.6), 

where ( , )dN � �  denotes a multivariate Gaussian distribution in d  dimensions with 

mean vector �  and covariance matrix � . It is noted here, that a slightly different 

parametric framework to that of Thyer (2001) is used in this study regarding the 

covariance matrices � . Gaussian correlation coefficients : , 1,...,ij i j d� �= ρ =� ��  that 

are independent of state were fitted with covariance , , 1,...,
t t t

i j
r ij r r i j d� �= ρ σ σ =� �� .  

Thus, the vector of unknown parameters for the multi-site HMM �  is composed of the 

state mean and variance parameters, the correlation coefficient parameters, the state 

transition probabilities, and the hidden state time series, giving:  

 ( )1, , , , , , TR= W W D D� � � � � � P  (2.7). 

The modelling assumptions for the multi-site framework are: 
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1. The distribution of hydrological data is composed of two independent 

distributions: a wet state and a dry state distribution. 

2. Both the wet and dry state distributions are multivariate Gaussian. 

3. The climate state at time t , tr , is purely dependent on the climate state from the 

previous time step, 1tr − . 

4. The probability of state transition is assumed to be stationary over time. 

5. Every site is assumed to be in the same climate state at every point in time, i.e. 

the climate state is assumed to be “regional”. 

Some empirical evidence for the assumption of multiple states has been presented in 

section 2.2.2, and many studies modeling rainfall have assumed an underlying Gaussian 

distribution (Srikanthan et al., 2002). The dependence on the previous timestep 

(through the climate state) is a natural assumption for environmental processes (Wikle, 

2003) – and is also supported by the apparent persistence identified in section 2.2.2. The 

assumption of stationarity of state transition probabilities is difficult to verify given the 

limited amount of data available. However, this model is simpler than a non-

homogeneous HMM which relaxes this assumption. The regional state structure is also 

supported by section 2.2.2, with several sites showing simultaneous apparent changes in 

rainfall mean. 

2.5.2 Hidden State Probability Series 

From the calibration of the HMM comes the hidden state probability time series. This 

series gives the posterior probability (as it is unknown) of any rainfall year used in the 

calibration being in either a dry (or wet) state. This probability time series is used to 

condition smaller timescale models, whereas the transition probabilities are used during 

simulation. An example of a hidden state probability series for Sydney (see Section 2.6 

for definition and discussion of sites) is shown in Figure 2.3.  A consistently dry period 

for the first half of the century can be identified by the low probability of the hidden 

state being wet, whereas wet periods become more common after 1950.  
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2.6 Limitations of the Multi-site HMM 

Srikanthan and McMahon (2001) conducted a review of annual rainfall models, 

comparing the widely used AR1 model and the two-state HMM. It was found that the 

two-state HMM assumptions were justified for a range of sites around Australia. 

However, clear identification of regions where the HMM assumptions held was not 

possible. The AR1 model (with parameter uncertainty included) was recommended for 

use as the HMM did not produce a demonstrably better fit to drought statistics such as 

five year rainfall sums at the sites where the HMM assumptions were justified. In that 

study, only single site data was used, with the majority of sites having just over 100 

years of record. At many sites, the climate states were insufficiently identifiable given 

this short amount of data. 
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Figure 2.3   Hidden state probability series : Single Site versus Multi Site HMM for Sydney 

Extensions of the HMM described in Thyer and Kuczera (2003a, 2003b) allowed the 

use of multiple site annual rainfall data. Assuming that the persistence occurs on a 

regional scale, rainfall data from multiple sites can be used to strengthen knowledge 

about actual persistence patterns.  However, there is the danger that the inclusion of data 

from a new site may bias the transition probabilities. This could arise if the climate 

controls on the new site were different to the controls on the other sites – in other words 

the new site does not belong to the same persistence region. An example illustrating the 

effect of including more annual rainfall sites on a state probability series for the Sydney 

region is shown in Figure 2.3. Using visual inspection the three-site HMM series does 

not differ from the single site series markedly, possibly indicating that the annual 
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climate influences are similar over the entire region. The three-site series shows less 

uncertainty about which state the climate is in, with fewer values being around 0.5 

(1973-76 and 1983-84). This may indicate that the climate state has been more clearly 

identified with the introduction of more sites.  

Of course the multi-site HMM is an idealisation of climate-rainfall interaction. In 

reality, the conceptual regional climate state is actually a continuum of climate 

influences. It is likely that some sites may experience different climate influences from 

sites nearby in some years, yet follow the trends of other sites in the majority of years. 

Inclusion of such a site into a multi-site analysis could bias the estimate of states as the 

regional state assumption is not true. On the other hand, not including the site in the 

analysis could result in the state series being insufficiently identified. More generally, 

the further sites are apart, the less likely they are under the same climate controls.  

Methods other than visual inspection are available to differ between the single and 

three-site results, but there in lies an essential question: how to choose sites to be 

included in the multi-site HMM analysis arises. That is, which method of grouping sites 

is appropriate? This problem has also been identified in using change-point models for 

modelling annual streamflow at multiple sites (Perreault et al., 2000b).   

2.6.1 Previous methods for choosing sites in an analysis 

Thyer (2001) and Thyer and Kuczera (2003a, 2003b) presented a methodology for 

calibration of the multi-site HMM. However, the development of a rigorous rationale 

for choosing sites to be included in a multi-site analysis was beyond the scope of their 

study. Rather those studies focussed on synthetic data calibrations to determine if 

parameters were identifiable given multi-site data generated from a HMM. Using the 

Warragamba catchment rainfall data, the model assumptions were checked given all the 

(five) sites had been used in calibration. This check revolved around an index of 

separation of the wet and dry means at each site, the wet and dry separation index 

(WADSI ) defined as:  

 
2 2

W D

W D

WADSI
µ − µ=
σ + σ

 (2.8). 
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This measure has links to the probability of a random rainfall variate generated from the 

wet state Wy  being less than that from the dry state Dy , denoted ( )W DP y y< . It is 

emphasised that the measure refers to marginal wet and dry random variates (hence lack 

of temporal super/subscripts) given the relevant calibrated state parameters for a single 

site. ( )W DP y y<  can be rewritten ( )0W DP y y− < . Given that any linear combination 

of two Gaussian distributions is also Gaussian, the probability ( )0W DP y y− <  can be 

written as: 

 
( ) ( )

2 2

2 2

0
0

1

W D
W D

W D

W D

W D

P y y
� �− µ − µ
� �− < = Φ
� �σ + σ	 


� �µ − µ
� �= − Φ
� �σ + σ	 


 (2.9), 

where ( )Φ ⋅  is the cumulative probability function for the standard Gaussian 

distribution. 

If all sites show a low probability that ( )W DP y y<  over all posterior parameter values, 

this is a good indication that assumption one of the HMM, is true. In that study, one site 

(Moss Vale) had the WADSI mode at zero, indicating poor separation of wet and dry 

parameters.  

Another diagnostic was used to check whether using multiple sites in calibration aided 

parameter identification compared to single site calibration. This check involved 

viewing the posterior probability plot (parameter uncertainty – see Section 3.2 Bayesian 

Modelling and Calibration with Application to the HMM) of the single site calibrations 

versus the multiple site. If the uncertainty decreased with more sites, this was 

interpreted as an improvement in the identification of the two-state persistence structure. 

Using the Moss Vale site in the calibration did reduce the uncertainty in the transition 

probabilities, hence producing a more clearly identified state series (this would be 

expected if Moss Vale contains information that aids identification of the state series). 

However, should this site have been included in the analysis given that it may have been 

violating a model assumption according to the WADSI? Alternatively, is the state series 

overidentified, with the information on state provided by Moss Vale being superfluous? 
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Can the fifth assumption of the HMM model, that every site is in same climate state at 

the same time, be justified? 

It was not clear in that study whether using the extra site was justifiable. Indeed Thyer 

(2001) states ‘a robust methodology for deciding whether a site belongs to a 

homogeneous persistence region has yet to be developed’. It is the main objective of 

this thesis to develop such a methodology – to parsimoniously model the spatially non-

homogenous long-term persistence apparent in Australian rainfall. 

With this objective in mind, some generalisations of the HMM are proposed. Rather 

than having to choose which sites should be included in an analysis, the generalised 

models modify the regional state assumption in some way, thereby alleviating the need 

to choose sites. 

2.7 Possible Generalisations of the HMM 

The current multi-site HMM is not equipped to deal with at-site anomalies, nor are there 

appropriate procedures for choosing sites which should be included in an analysis. Two 

generalisations of the multi-site HMM are proposed in this thesis, aimed at addressing 

these issues: 

� Switch HMM – Individual sites are permitted to vary from an overall regional 

climate state by the addition of ‘switch’ probabilities. That is, given the regional 

climate state, there is a probability that an individual site state will vary from 

that. This method was developed to accommodate anomalous sites. Given a 

regional state control has been identified, the switch parameters allow easy 

identification of sites which should not have been included in the analysis i.e. if 

a switch probability is significantly greater than zero at any site. 

� Regional HMM – Enables automated partitioning of the HMM into 

homogeneous climate regions. Each climate region has its own hidden state 

series. Each climate partitioning is a different model. Some form of model 

selection is required to choose the optimum partitioning. This method was 

developed to address choosing which sites to include in analysis: anomalous or 

otherwise. 



26 

 Chapter 2 – Modelling Long-term Persistence in Rainfall 

2.8 Conclusion 

This chapter introduced stochastic modelling of the interaction of climate and rainfall. 

Empirical evidence of persistence over long timescales in hydroclimatic processes was 

presented. The current lack of modelling techniques to explicitly accommodate this 

spatially non-homogeneous long-term persistence provided the motivation for the work 

undertaken in this thesis.  

The remainder of the chapter reviewed previous attempts at incorporating long-term 

persistence of climate into rainfall models. Links between the most successful of these 

models were discussed, with the majority conditioning the rainfall on a climate state 

variable. This climate state variable could be another measured process, or alternatively 

a latent parameter to be inferred upon calibration. 

Of the models surveyed, few attempted to incorporate inter-annual persistence into 

small timescale rainfall processes. Persistence is typically modelled in two ways: with 

inter-annual dependency being modelled within annual rainfall (or stream flow) models, 

or day-to-day dependency within daily rainfall models. The objective of explicitly 

incorporating inter-annual dependency in short timescale models was introduced to 

overcome the current underestimation of inter-annual variability within such short 

timescale models. 

The two-state HMM (Thyer, 2001) was introduced and compared to other closely 

related models for downscaling longer-term climate variations on short-duration 

rainfall. As this model has successfully identified inter-annual persistence in annual 

rainfall and runoff series at multiple regions throughout Australia, this model has been 

chosen to condition a short-duration rainfall model DRIP. 

The state series of the current multi-site HMM is sensitive to the sites chosen for 

analysis, with Thyer’s (2001) multi-site analysis lacking a rigorous rationale for 

choosing which sites belong to a climate region. Previously used methods for choosing 

which site to include in analysis were typically ad hoc, and the regional state 

assumption of the HMM could not be tested accurately. Therefore a formal method for 

choosing which sites to be included in a HMM analysis is required. 
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These considerations motivated two generalisations of the HMM aimed at modifying 

the regional state assumption, thereby alleviating the need for site selection. The first 

generalisation, the Switch HMM allows individual sites to differ from an overall 

controlling regional Markovian structure. The second, the regional HMM, on the other 

hand, allows sites to be grouped into different Markovian climate regions. 
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Chapter 3 Bayesian Modelling and Model Selection 

3.1 Introduction 

Given that new models are introduced in this thesis, some form of model 

discrimination/selection is required to choose between competing models or hypothesis. 

This chapter describes the modelling framework used in this thesis, with the framework 

being used primarily to discern between model hypotheses, with rigorous allowance for 

parameter uncertainty. This model selection framework has been rarely applied in the 

hydrological literature to date, as such a detailed description of this technique, along 

with a preliminary case study is presented. Although this chapter predominantly 

consists of a review of statistical literature, the author believes that such a review is 

required if these techniques are to be applied with understanding by hydrological 

practitioners. Hence, the understanding gained in the application of this technique is the 

essence of the contribution of this chapter towards the objectives of the thesis.  

In hydrology, calibration methods typically do not account for parameter uncertainty, 

with an optimisation technique usually employed to find a parameter set that is optimal 

according to some defined criterion. Reliance on this optimum parameter set 

overestimates the confidence of output simulations from the model, as parameter 

uncertainty has not been incorporated. The Bayesian modelling paradigm specifically 

addresses this parameter uncertainty by making the parameters an object of inference. 

This chapter introduces the Bayesian modelling framework, along with a parameter 

sampling technique of Bayesian modelling, Markov Chain Monte Carlo (MCMC).  

Two general MCMC sampling techniques have found wide use in Bayesian modelling: 

the Metropolis-Hastings (MH) sampler and the Gibbs sampler. Application of the MH 

algorithm to the HMM is presented here. This involves formulation of the model 

likelihood function, which in turn is used in calculation of the posterior state probability 

series. This study differs from the previous study of Thyer (2001) where the Gibbs 

sampler was used. The Metropolis-Hastings sampler was chosen for use here due to its 

simplicity and adaptability to the model selection context. This is demonstrated at the 

end of the chapter, with the application of a generalised MH sampler, the Metropolised 

Carlin-Chib (MCC) sampler.  



29 

 Chapter 3 – Bayesian Modelling and Model Selection 

Inherently linked to the modelling framework, is the question of how to choose one 

model over another. This chapter reviews this task in detail as this thesis relies heavily 

on model selection techniques to choose the most appropriate generalisation, or 

otherwise, of the HMM. Just as choosing sites to be included in the HMM involves a 

choice between models, so does exploring generalisations of the HMM involve a choice 

between models. Is the uncertainty introduced by the generalisations offset by the 

information gained? Is the model parsimonious? An objective method of choosing 

between models, whilst accounting for uncertainty and parsimony needs to be 

employed. 

Choosing the ‘right’ model, given a set of data, is not usually a trivial task. Indeed, 

choosing the ‘right’ model selection method can be just as difficult. Of the many 

methods available, Bayesian Model Selection (BMS) is attractive in that it directly 

provides an estimate of the probability of one model compared to another given the 

data. This chapter provides an introduction to BMS and its use with MCMC sampling 

techniques. It illustrates BMS by comparing three annual point rainfall models for data 

collected in Sydney, Australia, using the Bayes factor and other related selection 

methods (Bayesian Information Criterion, the Posterior Bayes Factor, Akaike’s 

Information Criterion the Likelihood Ratio Test). Particular attention is given to the 

sensitivity of the Bayes factor to the choice of prior. 

3.2 Bayesian Modelling and Calibration with Application to the 

HMM 

The general Bayesian framework is described first, and refined later for the particular 

models in use. We begin with some definitions – further details can be found in, for 

example, Lee (1989) and Gelman et al. (1995). Consider a set of observations y   

hypothesized to be a random realization from the probability model M with generalized 

probability density function ( )| ,f My �  where �  is a finite-dimensioned parameter 

vector. The function ( )| ,f My �  is given two labels depending on the context. When 

( )| ,f My �  is used to describe the probability model generating the sample data y for a 

given �  it is called the sampling distribution. However, when inference about the 

parameter �  is sought, ( )| ,f My �  is called the likelihood function to emphasize that 
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the data y is known and the parameter �  is the object of attention. We use the same 

notation for the sampling distribution and likelihood function to emphasize its oneness. 

In Bayesian inference, the parameter vector �  is considered a random vector whose 

probability distribution describes what is known about the true value of � . Prior to 

analysing the data y knowledge about �  given the probability model M is summarized 

by the probability distribution ( )|p M�  where ( )p ⋅  is the generalized probability 

density. This density, referred to as the prior density, can incorporate subjective belief 

about � . Bayes theorem is used to process the information contained in the data y by 

updating what is known about the true value of �  as follows: 

 
( ) ( ) ( )

( )
| , |

| ,
|

f M p M
p M

p M
=

y � �
� y

y
 (3.1). 

It is noted here that the collective parameter space Θ  where the prior has a non-zero 

value is termed the support of the parameter � . This support is symbolized by ∈ Θ� . 

The posterior density ( )| ,p M� y  describes what is known about the true value of �  

given the data y  and the model hypothesis M . The denominator ( )|p My  is the 

marginal likelihood and is defined as: 

 ( ) ( ) ( )| | , |p M f � p M d
∈Θ

= �
�

y y � � �  (3.2). 

3.2.1 Sensitivity to prior specification 

The choice of prior is an inherently subjective task. Accordingly the introduction of 

priors has been the subject of much controversy (Berger, 2000). The parameter prior 

( )|p M�  can represent the modeller’s subjective belief - for example an experienced 

modeller may have a prior belief about the region in which the true parameters lie 

before fitting a model. The parameter prior allows formal incorporation of this belief. 

On the other hand, it may be the case that the modeller has little or no idea of where the 

true parameters lie. In such a case a prior distribution with an equal density over all 

parameter values could represent the state of prior belief. 
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Of course the formulation of the model itself is quite subjective. As Wikle (2003) states 

‘One must simply recognize that a strength of the hierarchical (Bayesian) approach is 

the quantification of such subjective judgement’.   

The posterior distribution can be sensitive to parameter prior specification (and hence 

can affect estimation). As such, much literature regarding the choice of a prior 

distribution has been directed towards the formulation of non-informative priors, priors 

which it can be argued that there is ‘no information’ about the parameter vector  

� (Gelman et al., 1995 p.52-57, Carlin and Louis, 2000 p.38-32), implying the resulting 

analysis is completely objective rather than subjective. Jeffreys (1961 p.181) suggests a 

prior that is invariant under transformation (a desirable property – as the particular 

parameterisation transformation which is chosen by the modeller is subjective). 

Subsequent work has moved towards the calculation of reference priors (Bernardo, 

1979) (for single parameter models) and later modified for multiparameter problems 

(Berger and Bernardo, 1992). However, it is recognised by Bernardo and Smith (2000 

p.298), that ‘every prior has some informative posterior and predictive implications’ and 

‘there is no “objective” prior that represents ignorance’. 

Reference priors for the HMM’s and subsequent modified models used in this thesis 

have not been calculated (to the author’s knowledge). As in the study of Stephens (1997 

p.12) we have used proper priors which attempt to be only “weakly informative” – 

representative of our subjective prior belief. We likewise complete the analysis with the 

warning that we feel further work is required on the appropriate specification of priors.  

All priors used in this thesis are proper, that is, they integral sums to one over the 

parameter space (Gelman et al., 1995 p.52). Use of proper priors ensures that the 

posterior distribution is also proper – a requirement of Bayesian inference. Another 

factor related to weakly informative priors and mixture models is identifiability. This 

property, along with propriety or the priors, is discussed for the HMM and other newly 

introduced variants within section 4.5.  

Usually (given enough data) the posterior density is not overly sensitive to the choice of 

prior density. However, as we will discover, choice of prior can influence the marginal 
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likelihood substantially. This becomes important in BMS, and as such will be discussed 

in more detail later in this chapter (section 3.7.1).  

3.2.2 Posterior distribution 

The posterior distribution is the focus of Bayesian modeling calibration, with output 

simulations and inference being dependent on its shape. Other calibration procedures 

typically involve a maximization process (e.g. Maximum likelihood, EM algorithm, 

least squares), with one vector of parameter values being used for simulation purposes. 

Bayesian modeling differs in that the entire posterior distribution is of interest, not just 

the maximum. Not including this uncertainty about the true value of �  could therefore 

lead to over confident predictions and simulations for any one model. 

3.3 MCMC Sampling Techniques 
For the models considered in this study it is not possible to derive an analytical 

expression for the posterior distribution. In such a case it is possible to provide 

approximations to the posterior using mode finding coupled with multivariate normal or 

t-distribution approximations about the mode, and then improve upon the approximation 

using standard Monte Carlo importance sampling techniques (see Gelman et al., 1995 – 

Chapters 11 and 12). The problem with such sampling techniques and approximations is 

that they ‘may not be adequate for the inferential task at hand’ – that is, they may be 

inefficient and/or inaccurate. A method that can provide efficient estimates of the 

posterior distribution is Markov Chain Monte Carlo (MCMC). The efficiency of 

MCMC when compared to independent sampling techniques is due to the Markovian 

dependency, ensuring that areas of low posterior probability are not sampled 

unnecessarily. Accuracy of the algorithm is guaranteed as it is proven that samples from 

MCMC algorithms converge to the posterior distribution.  

MCMC calibration methods are employed to draw samples from the posterior 

distribution. The basic idea of MCMC methods is to simulate a Markov chain iterative 

sequence, where for each iteration i, a sample of the model parameters, ( )i
� , is 

generated according to a jump distribution ( )* ( 1)| i
iJ −� �  dependent only on the previous 

sample’s position ( 1)i−
� . With each proposed jump there is also an associated probability 
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of accepting that jump ( )( )1* | −i��α . A sufficient condition for the simulated Markov 

chain to provide samples from the posterior distribution is detailed balance:  

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )bababababa

abbbaa

JMpJMp

pMppMp

����y�����y�

��y���y�

||,|||,|

,,|,,|

αα =
=

 (3.3), 

where ( )bap �� ,  represents the unconditional transition probability from a
�  to b

�  of the 

sampling chain. For a jump distribution and associated acceptance probability satisfying 

this condition (and other mild conditions, see Gelman et al., 1995 p. 325) the sampling 

chain converges with sufficient samples to a stationary distribution (Mengersen and 

Tweedie, 1996, Roberts and Tweedie, 1996), the posterior distribution ( )| ,p M� y . This 

distribution of parameters is used to evaluate posterior quantities of interest. 

3.3.1 Posterior Quantities of Interest 

After sampling using MCMC methods, it is often the case that an expectation of some 

function ( )G �  over the posterior distribution will need to be estimated. Such quantities 

of interest are evaluated according to: 

 ( ){ } ( ) ( )E G G | ,p M d= �� � � y �  (3.4). 

Given that we have posterior samples from MCMC sampling, such expectations are 

evaluated according to numerical integration:  

 ( ){ } ( ) ( )( ) ( )

1

1
E G G , | : 1,...,

ns
i i

i

p M i ns
ns =

= ← =�� � � � y,  (3.5). 

One simple example of such a quantity would be where the function G( )�  is �  itself. 

Evaluation of (3.5) would give the posterior mean of the parameter set. 

Evaluations of such integrals according to (3.4), and simulations from the model require 

samples from the posterior distribution. Two very general MCMC sampling techniques 

have found wide use in providing such samples, they are the Metropolis-Hastings (MH) 

sampler and the Gibbs sampler.   
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3.3.2 The Metropolis-Hastings Sampler 

The Metropolis-Hastings algorithm (taken from Gelman et al., 1995 p.324) is described 

below: 

1. Draw a starting point 0
� , that has a positive posterior probability. 

2. For i=1,2,…: 

a) Sample a candidate point *
�  from a jump distribution at iteration i, 

( )* ( 1)| i
iJ −� � . We will define this jump distribution shortly. 

b) Calculate the ratio of densities: 

 ( ) ( )
( ) ( )

* * ( 1)

( 1) ( 1) *

| , |

| , |

i
i

i i
i

p M J
r

p M J

−

− −
=

� y � �

� y � �
 (3.6). 

c) Set 

 ( )*
( )

( 1)
with probabilitymin ,1
otherwise.

i
i

r
−

�= �
�

�
�

�
 (3.7). 

d) Check convergence – If sufficient samples taken, stop. Otherwise continue. 

Detailed balance of the Metropolis-Hastings algorithm is verified through substitution 

of the acceptance probability ( )( ) ( )1,min| 1* ri =−��α  into (3.3). Samples from this 

algorithm will converge to the target distribution ( )| ,p M� y  (the posterior distribution) 

under mild conditions as i → ∞ . In practice, the sampling is stopped at a point that 

approximates the posterior to some degree of satisfaction. 

The aim of Bayesian modelling is to infer properties of the posterior. All of the samples 

given by MCMC sampling are used to summarise the posterior density and to compute 

quantiles, and other summaries as needed (Gelman et al., 1995). Therefore, monitoring 

methods are required to give an indication of how representative the samples taken from 

the MCMC method are, in turn giving a point at which to stop sampling. Multiple chain 

MCMC is used for this purpose. 
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Using multiple chains allows testing of the individual chains against all of the samples 

thereby allowing testing of whether each chain is yielding samples from the same 

distribution. The measure used in this study, introduced by Gelman and Rubin (1992), 

compares the estimated within chain variance ( )var |chains� y  (for a particular 

parameter), to the overall variance of samples taken from all chains ( )var |all� y . If the 

ratio ( ) ( )var | var |all chains� y � y  is close to 1, the overall variance is close to each 

chain’s variance. Values significantly greater than 1 indicate that the chain’s variance is 

less than the overall variance, hence the individual sequences have not had time to range 

over all of the target distribution. This ‘scale reduction factor’ is given by:  

 ( )
( )

var |ˆ
var |

all

chains

R =
� y
� y

 (3.8). 

For more detail see Gelman et al. (1995, p331-332). Values of R̂  below 1.2 for all 

parameters are recommended as being acceptable. This measure is very popular due to 

its simplicity, however it focuses only on statistics related to the mean and variance of 

the distribution, and resulting samples may be inadequate if reproduction of higher 

order statistics (eg. skew) are important. It is emphasised that there are many other and 

more complicated diagnostics available, yet none can guarantee convergence as the 

underlying distribution is unknown – for a review of convergence diagnostics see 

Mengersen et al. (1998).  

The MH sampler requires the specification of two distributions, the posterior 

( )| ,p M� y  and jump ( )* ( 1)| i
iJ −� �  distributions. The posterior is calculated by 

simplifying (3.1) to:  

 ( ) ( ) ( )� | , | ,� � |p M f M p M∝y y  (3.9). 

The marginal likelihood has been dropped from this equation as it is not a function of 

parameters, and as such, during sampling it can be considered a constant. As this 

normalising constant is equal for both ( )* | ,p M� y  and ( )( 1) | ,ip M−� y  in the 

acceptance ratio calculation (3.6), only the likelihood and prior require calculation. 
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The jump distribution ( )* ( 1)| i
iJ −� �  determines the efficiency of the sampler. Generally, 

the better the jump distribution approximates the posterior, the more efficient the 

sampler will be. Properties of the jump distribution - distributional form, location, 

covariance etc. - are user chosen. If the covariance of the jump distribution is too large, 

jumps will be proposed to areas of low posterior probability, therefore producing low 

acceptance rates. However, if the covariance of the jump distribution is too small, the 

sampler will be slow in covering the distribution. 

If a symmetric jump distribution is used (eg. Gaussian), the jump distribution densities 

in the acceptance ratio calculation are equal (the probability of jumping to a point is 

equal to that of jumping back), and hence drop out of the calculation. This 

simplification yields the original Metropolis sampler (Metropolis et al., 1953). This 

algorithm was later generalised by Hastings (1970) to enable use of non-symmetric 

jumping distributions.   

Many attempts have been made to improve the convergence efficiency of the MH 

sampler (eg. Andrieu and Robert, 2001). These attempts usually adjust the jump 

distribution during sampling to better approximate the posterior based on previous 

samples. Such techniques can cause the chain to lose its Markovian property, and proofs 

for convergence to the posterior (ergodicity) may not hold. These samplers run the risk 

of producing samples not from the posterior distribution, and estimates based on sample 

averages may be biased. Unfortunately, it is difficult to prove whether any one sampler 

will eventually converge to the posterior. Empirical tests based on synthetic studies are 

used. The methods used in simulations in this thesis have been widely used in many 

other studies, and it is expected that they do provide samples from the posterior given 

sufficient time to converge. These MH sampler modifications are listed below: 

� Start all chains at mode of distribution (Kuczera and Parent, 1998), thereby 

reducing the chance of some chains taking a very long time to reach areas of 

high posterior probability. 

� Use a multivariate Gaussian distribution for the jump distribution, with mean 

located at the current sample location ( ) ( )* ( 1) ( 1)| ,i i
i JJ N− −� � � �� . This gives 

the random-walk Metropolis sampler noted in Chib and Greenberg (1995). 
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� An initial estimate of the posterior covariance, based on the Hessian around the 

mode, is used for the Gaussian covariance matrix J� . 

� Initial ‘warm up’ samples are discarded, as using the same starting point for all 

chains could cause bias. Usually, this number is half of all the samples taken. 

� Periodic updating of the jump distribution covariance J�  based on previous 

samples (Kuczera and Parent, 1998, Haario et al., 1999) 

� Periodic scaling of the jump distribution covariance to reproduce an optimal 

acceptance rate as defined in Gelman et al. (1995 p.335). 

The sampler used throughout this thesis, with periodic updating of the jump 

distribution, has later been shown to be biased in some cases by Haario et al. (2001). 

‘As the updating rule depends on previous simulation steps, then the transition 

probabilities are more complicated than is stated in the Metropolis-Hastings algorithm, 

and the iterations will not necessarily converge to the target distribution’ (Gelman et al., 

2004 p.307). That is, detailed balance (a sufficient but not necessary condition for 

convergence) may not be preserved. Development of adaptive samplers that produced 

unbiased sampled distributions have been undertaken by various authors (Andrieu and 

Robert, 2001, Haario et al., 2001) and are recommended for  future studies.  

3.3.3 The Gibbs Sampler 

In previous applications of the two-state HMM, the Gibbs sampler was used (Chib, 

1996, Thyer, 2001). The Gibbs sampler (Geman and Geman, 1984) is a special case of 

the MH sampler. The parameter vector *
�  to be sampled is broken into subvectors 

( )* * *
1 ,..., d=� � � , with each subvector being sampled directly (from an analytically 

calculated conditional distribution). Sampling directly from these conditional 

distributions ensures that the acceptance ratio for every jump is one – all samples are 

accepted. At each iteration, the Gibbs sampler cycles through each of the subvectors of 
*
� , drawing each subset conditional on the value of all others – for subvector j 

( )* * *~ | ,j j jp −� � � y  where ( )* * * * *
1 1 1,..., , ,...,j j j d− − +=� � � � � . These conditional distributions 

can be calculated for most commonly used statistical models. 
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3.4 Application of the MH algorithm to the HMM 
Although the Gibbs sampler can be used for HMM problems, it was not used in this 

study. The Metropolis sampler was considered to be simpler to implement primarily 

because there was no need to treat the hidden states as parameters. As a result, the 

computational trapping states detailed in Thyer (2001) are no longer encountered. 

Although the Gibbs sampler is more efficient in a computational sampling sense (every 

sample is accepted), the MH sampler avoids programming complicated conditional 

distributions, with a higher inherent risk of programming error. An additional bonus of 

using the MH sampler is that it is very easily adaptable to the more general case of 

sampling from model to model (model selection). This will become apparent when 

discussed later in this chapter. 

3.4.1 Calculation of HMM Likelihood 

The Metropolis algorithm requires the calculation of the likelihood (and prior) at each 

iteration of the sampler. This likelihood calculation requires the application of the 

forward phase of the Baum-Welch recursive algorithm. For further details of this 

general algorithm for HMM’s see Bengio (1999). Noting that each year’s rainfall is only 

dependent on the previous year’s rainfall through the (hidden) Markov state, the HMM 

likelihood can be written as: 

 ( ) ( ) ( )1
1 1 1

2

| | | ,
T

T t
t

t

p p p −

=

= ∏Y � y � y Y �  (3.10). 

This likelihood substitutes for ( | , )f My �  in (3.9) where M is in this case the two-state 

HMM, and �  is the particular parameter set. Because (3.9) can be evaluated, MH 

sampling can be used to provide inference on the posterior parameter distribution. The 

parameter vector used here is ( ), , , , ,= W W D D� � � � � � P , with wet and dry mean and 

variance parameters for every site ( ), , ,W W D D� � � � , a correlation coefficient matrix 

: , 1,...,ij i j d� �= ρ =� ��  that is independent of state, and a single set of regional 

transition probabilities ( )1 , ,ij t tp p r j r i i j W D−� �= = = = =� �P . Note that the 

parameter vector used, does not include the latent regional state series 

( )1 1 2, ,...,T
TR r r r= . This is the important difference when comparing the algorithm to the 
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Gibbs sampler, the likelihood (3.9) integrates out these regional states, eliminating the 

need to infer the state series.  

To evaluate (3.10), we carry out the following set of calculations repeatedly, starting at 

the first time-step ( 1t = ), for each time-step until the final time-step T . Here the set of 

data until time t  is signified by ( )1 1 2, , , t
t= …Y y y y . Noting that tr  is the (hidden) 

regional state at time-step t , the conditional probability 1
1( , )t

tp r −Y �  can be obtained 

using total probability: 

 
1

1

1 1 1
1 1 1 1 1

1
1 1 1

( , ) ( , , ) ( , )

( , ) ( , )
t

t

t t t
t t t t

r

t
t t t

r

p r p r r p r

p r r p r
−

−

− − −
− −

−
− −

=

=

�

�

Y � Y � Y �

� Y �
 (3.11). 

One of the assumptions of the HMM is that the state at each timestep is only conditional 

on the previous timestep state. Hence the simplification of 1
1 1( , , )t

t tp r r −
− Y �  to 

1( , )t tp r r − � , the transition probability. Note the conditioning on the parameter vector 

throughout the derivation. For time-step t  the vector ty  is drawn from a multivariate 

normal ( ),
t tt t r rr Ny � �� , where : 1,...,

t t

site
r r site d� �= µ =� ��  and 

: , 1,...,
t t t

i j
r ij r r i j d� �= ρ σ σ =� �� . Using total probability the conditional density 

( )1
1| ,t

tp −y Y �  can be obtained: 

 ( ) ( ) ( )
( ) ( )

1 1 1
1 1 1

1
1

| , | , , | ,

| , | ,
t

t

t t t
t t t t

r
t

t t t
r

p p r p r

p r p r

− − −

−

=

=

�

�

y Y � y Y � Y �

y � Y �
 (3.12). 

The state probability at time-step t  given 1
tY , ( )1| ,t

tp r Y � , can be obtained using 

Bayes’ theorem yielding: 

 
( ) ( ) ( )

( )
( ) ( )

( )

1 1
1 1

1 1
1

1
1

1
1

| , , | ,
| ,

| ,
| , | ,

| ,

t t
t t tt

t t
t

t
t t t

t
t

p r p r
p r

p
p r p r

p

− −

−

−

−

=

=

y Y � Y �
Y �

y Y �

y � Y �

y Y �

 (3.13). 
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Now as we can calculate ( )1| ,t
tp r Y �  we can evaluate (3.11) for the next time-step, 

namely 1t + . Therefore, we can repeat the calculation for the next time-step, and so on. 

Using the result of (3.12) for each time-step we calculate the overall likelihood by 

evaluating (3.10). 

3.4.2 Posterior Hidden State Series 

The posterior hidden state probability series, as introduced in Section 2.5.2, is 

calculated as a product of the calibration process. Reiterating, this is the posterior 

probability of a particular state tr  occurring at time-step t , ( )1| ,T
tp r Y � , where 

1,...,t T= . Note that this probability is conditioned on all of the available data, rather 

than the data until time t  as in (3.13). The required probability can be obtained using 

Bayes theorem: 

 
( ) ( ) ( )

( )
( ) ( )

( )

1 1 1
1

1 1

1 1

1 1

| , , | ,
| ,

| ,
| , | ,

| ,

T t t
t t tT

t T t
t

T t
t t t

T t
t

p r p r
p r

p
p r p r

p

+

+

+

+

=

=

Y Y � Y �
Y �

Y Y �

Y � Y �

Y Y �

 (3.14). 

The probability ( )1 1| , ,T t
t tp r+Y Y �  simplifies to ( )1 | ,T

t tp r+Y �  due to the Markovian 

assumption of the HMM. ( )1| ,t
tp r Y �  is given in (3.13). ( )1 1| ,T t

tp +Y Y �  is a constant 

independent of tr  and therefore is a normalising constant. The remaining term 

( )1 | ,T
t tp r+Y �  requires the ‘backward’ or smoothing phase of the Baum-Welch 

recursion. With a similar set of calculations to the likelihood, starting at time-step t T=  

and working backwards in time we obtain: 

 ( ) ( )
( ) ( )
( ) ( )

1 1

1 1 1

1 1

| , , | ,

| , , , , | ,

| , , | ,

t

t

t

T T
t t t t t

r
T
t t t t t t t

r
T
t t t t t

r

p r p r r

p r r p r r

p r p r r

− −

+ − −

+ −

=

=

=

�

�

�

Y � Y �

Y y � y �

Y � y �

 (3.15), 

where by virtue of Bayes theorem:  
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 ( ) ( ) ( )
( ) ( )

1 1 1

1

, | , | , , | ,
| , | ,

t t t t t t t t

t t t t

p r r p r r p r r
p r p r r

− − −

−

=
=

y � y � �

y � �
 (3.16). 

Note at the initial time-step t T= , ( )1 | , 1T
t tp r+ =Y �  is inserted into (3.15) so that 

( ) ( )1 1| , , | ,
t

T
t t t t t

r

p r p r r− −=�Y � y � . 

The intuition behind this calculation is that the data observed after the time-step in 

which the state occurred provides information about the state in question. 

3.5 Bayesian Model Selection 

Closely related to the likelihood, and sampling from the posterior distribution (in the 

Bayesian framework), is the question of model selection. The modelling selection 

technique used in this thesis is Bayesian model selection (BMS). 

BMS has seen limited application in the hydrology literature; see Perreault et al. 

(2000a) and Campbell et al. (1999) for examples. This may be partly due to the 

perception that these methods are difficult to implement compared to more traditional 

methods. However, recent advances make BMS more practicable. Of significance is the 

fact that MCMC methods enable simple and accurate implementation of BMS 

procedures. Nonetheless, as we have discovered, BMS demands care in its 

interpretation. 

This section briefly reviews some of the key ideas in BMS. BMS as used herein refers 

to a specific method of model comparison (through the posterior model probability and 

related Bayes factors – see the following section). A compact overview of BMS and 

some other related model comparison methods is appropriate in order to highlight some 

of the conceptual and practical difficulties that may be encountered when attempting to 

decide between competing models. It draws principally from the works by Kass and 

Raftery (1995), Gelfand and Dey (1994), Aitkin (1991) and Wasserman (2000). 

3.5.1 Marginal Likelihood and the Bayes Factor 

We consider the case in which there are nm  competing models{ }1,..., nmM M . Our 

interest is to compute the posterior probability ( | )ip M y , 1,...,i nm=  which describes 
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the probability that, out of the nm  competing models, model iM  generated the 

observed data y . Application of Bayes theorem yields: 

 

1

( | ) ( )
( | )

( | ) ( )

i i
i nm

j j
j

p M p M
p M

p M p M
=

=
�

yy
y

 
(3.17), 

where ( )ip M  is the prior probability that the model iM  generated the data. 

It is fair to express some skepticism about the possibility that the true model is one of 

the nm  competing models (Wasserman, 2000). However, the posterior probability 

( )|ip M y  enables us to rank competing models. 

For two competing models iM  and jM , (3.17) can be rearranged to yield the posterior 

odds that iM  is more likely than jM  given the data y. Thus: 

 ( | ) ( ) ( | ) ( )
( , )

( | ) ( ) ( | ) ( )
i i i i

i j
j j j j

p M p M p M p M
BF M M

p M p M p M p M
= =y y

y y
 (3.18). 

The ratio of the model priors is called the prior odds, while the ratio of the marginal 

likelihoods is the Bayes factor - defined as ( , )i jBF M M . Because the prior odds is often 

assigned a value of 1 (for reasons outlined later), the Bayes factor becomes important in 

BMS and thus has received wide attention in the statistical literature. Kass and Raftery 

(1995) give a thorough overview of Bayes factors, while Wasserman (2000) discusses 

BMS in an overview paper aimed at a non-specialist audience. They both suggest 

interpretive scales for Bayes factors based on Jeffreys (1961) – Kass and Raftery’s 

version is shown in Table 3.1. Note that when the BF is less than one it needs to be 

inverted with the resulting number interpreted as the evidence in favour of jM . 
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Table 3.1   Bayes Factor Interpretive Scale 

Bayes Factor BF(Mi,Mj) Evidence in favour of Mi 

1 to 3 Weak 

3 to 20 Positive 

20 to 150 Strong 

>150 Very Strong 

3.6 Consistency of the Bayes Factor 

Why would we want to use Bayes factors? The short answer is that the Bayes factor will 

choose the true model given enough data provided that the true model is one of the 

competing models. This is due to a property of the posterior distribution called 

consistency, which put roughly states that given enough data, the expected value of the 

posterior will converge to the true parameter. 

3.6.1 Nested model consistency 

The consistency of Bayes factors is illustrated for the nested model selection problem 

where 0M  is the reduced model with 0=� �  and 1M  is the full model with 0≠� � . The 

Bayes factor (BF), the ratio of the marginal likelihoods, is given by: 

 
( ) ( )

( ) ( )
0 1

0 1

1 1

| ,
,

| , |

f M
BF M M

f M p M d
=
�

y �
y � � �

 (3.19). 

There is no integral term in the numerator because according to the reduced model 0M  

there is only a single parameter value 0� . In the numerator the likelihood is conditioned 

on the full model 1M  to emphasize that 0M  is a special parametric case of 1M . 

It is assumed in the following example that the data was generated from one of the 

models under consideration; that is, one of the models can be considered the true model.  



44 

 Chapter 3 – Bayesian Modelling and Model Selection 

We consider a simple example involving data generated by an independent and 

identically distributed Gaussian model with known variance 2σ . We want to test 

whether the true model is 0 0:� �M =  or 1 0:� �M ≠ , where �  is the unknown mean of 

the Gaussian distribution. Given the known variance 2σ , the likelihood function is: 

 
( ) ( )2

1 2
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1 1
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 (3.20), 

where y  is the mean of the data and ( )22

1

1
y

1

T

t
t

s y
T =

= −
− � is the sample variance. Note 

here we are considering univariate series with scalar data ty  only at each point t.  

Substituting (3.20) into (3.19) and then using a uniform prior on �  over the range 

[ ],c c−  for model 1M  yields: 
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 (3.21). 

Note that the denominator is finite in (3.21). As the number of data T  increases, the 

sample mean y  converges to the true mean �true . If, in fact 0� �true = , then the 

exponential term in the numerator 1→ . Therefore, as T → ∞ , BF → ∞  which favours 

0M , the true model. In contrast, when 1M  is the true model, namely 0� �true ≠ , then as 

T → ∞ , the numerator term 0→ . Therefore, the 0BF →  which favours 1M , the true 

model. 
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3.6.2 General Consistency for Nested and Non-nested models 

For finite-dimensional (parametric) models, the posterior distribution can be shown to 

be consistent under mild regularity conditions (Schervish, 1995). This is important 

because consistency of the posterior guarantees that the true model will be chosen given 

a sufficiently large number of data. It is accepted that the ‘true’ model is unlikely to be 

contained in the models that are being compared. However, it is reassuring to know that 

if the true model is in the set of competing models, then it will be chosen as the 

favoured model given sufficient data. 

It is emphasised again that even if the true model is not contained in the set that is being 

compared, the Bayes factor coupled with the model priors provides the ratio of posterior 

probabilities of one model compared to another given the data. This said, there are 

pitfalls associated with BMS, the topic of the next section.  

3.7 Sensitivity of Bayes Factors to Choice of Prior 

In BMS two priors must be specified. First, given a model M , the prior parameter 

density ( )|p M�  requires specification. Second, the prior probability of the model 

being most consistent with the data ( )p M  must also be specified. These are inherently 

subjective tasks and are very important in BMS as the conclusions made can be 

sensitive to both of these priors.  

3.7.1 Parameter Prior 

As mentioned in section 3.2.1, priors used in this study were chosen with the aim of 

being weakly informative. Regarding the HMM in this thesis, priors following Robert 

(1996) and subsequently Thyer (2001) were used. These priors were chosen based on 

mathematical convenience (conjugacy), with empirical Bayes methods used to define 

location and scale (Carlin and Louis, 2000). Use of such priors can be criticised due to 

their subjectivity (compared to reference priors), but as mentioned previously, reference 

priors for the models presented in thesis have not been derived. 

Often, a uniform parameter prior is employed if there is little prior experience with a 

model. Unfortunately, a uniform (equal density or flat) priors are not invariant to 

transformation – and can therefore be quite informative depending on the 
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transformation used (Carlin and Louis, 2000 p.29). As Carlin and Louis (2000) note, ‘a 

possible remedy to this problem is to rely on the particular modelling context to provide 

the most reasonable parameterization and, subsequently, apply the uniform prior on this 

scale’. Uniform and empirically based priors are used throughout this thesis, and all 

conclusions made are done so with the caveat that reference priors are not used. 

This uniform prior, must however be used with caution in BMS.  

3.7.2 Lindley’s Paradox  

If a uniform prior that ranges to infinity ( c = ∞ ) is employed in equation (3.21), the 

Bayes factor is infinite regardless of whether 0M  is the true model or not. This result, 

known as Lindley’s paradox, has received considerable attention in the literature (e.g., 

Bartlett, 1957, Lindley, 1957, Berger, 1985). A simple way of sidestepping this is to use 

bounded priors; that is, require that c  have a finite value. Often there are natural bounds 

on parameters while other times it is left to the modeller to judge the range of 

parameters within which the true parameter could lie. 

What is disturbing is that the Bayes factor in equation (3.21) is effectively proportional 

to c  - and this problem is general to all modelling cases where a uniform unbounded 

prior is used. This suggests that considerable thought needs to be given to specification 

of the parameter prior. 

3.7.3 Model Prior 

The modeller may also have some prior subjective belief about which of the competing 

models is the best. Such a belief may arise from previously favourable results using a 

particular model or from knowledge that a particular model better represents the 

underlying physical characteristics of the process. However, it is usual practice to 

specify non-informative model priors where all model priors are equal. Because the 

Bayes factor is independent of model priors, the sensitivity of the posterior odds to 

model priors can be checked after calculation of the Bayes factor.  

3.7.4 Bayes factors versus posterior distributions 

Gelman et al. (1995 p.175-177) have questioned the value of BMS in some 

applications. They argued that in cases where competing models are distinctly and 
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legitimately different, for example, the two-state HMM and lag-one autoregressive 

(AR1)  models presented in the case study, Bayes factors coupled with proper non-

informative model priors provide a worthwhile means for model selection. However, in 

cases where both competing models are special cases of a more general parametric 

model, they argue that BMS may be a hindrance because the true model is likely not to 

be one of the special cases. They recommend that the posterior distribution of the 

parameters characterizing the different models be studied.  

Although the nested model selection case cited in Section 3.6.1 does not fit into Gelman 

et al’s latter category we also believe that use of the posterior distribution 1( | , )p M� y  

may be preferable to BMS. Difficulties may arise in assigning prior probabilities to the 

reduced model 0M  and to its parametric generalization - the full model 1M .  

For example, consider the case of the AR1 model with �  being the lag-one correlation. 

In the case study we are interested in comparing the model 0 : 0M =�  versus its 

complement 1 : 0M ≠� . If the data are annual streamflows (not rainfall), there is good 

prior evidence in favour of the hypothesis that annual streamflows are weakly correlated 

(see Yevjevich, 1963). Therefore, ( ) ( )1 0p M p M> . The fundamental problem is how 

we assign a probability to 0( : 0)p M =�  when the prior evidence is in the form of a 

probability density about �  − in such a case the prior probability that 0=�  is 0. 

Obviously, this problem would go away if model 0M  hypothesized that �  lies in a 

finite interval. However, we believe it is more natural to study the posterior distribution 

1( | , )p M� y . 

3.8 Other Model Selection Criteria 

Brief mention is made of some other related model selection methods: the likelihood 

ratio test, posterior Bayes factors, Akaike’s information criterion, and the Schwarz or 

Bayesian information criterion. 
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3.8.1 Likelihood Ratio 

Neyman and Pearson (see Marden, 2000) developed the likelihood ratio test (LRT). Its 

primary application is for the nested model selection problem where the likelihood ratio 

LR is: 

 1
0 1

1

( | , )
( , ) ˆ( | , )

f M
LR M M

f M
= 0y �

y �
 (3.22), 

with �̂  being the maximum likelihood estimate of �  for the full model 1M . If LR is 

less than some threshold (for large samples the threshold is based on the χ2 

distribution), then the full model 1M  is chosen. The LRT is prone to misinterpretation 

(Berger and Sellke, 1987) and is only applicable to nested model selection problems. 

Also, as explained in Gelfand and Dey (1994), the LRT is inconsistent in that there is 

always a positive probability of choosing the full model when the reduced model is true, 

even with a large number of data.  

To compensate for the bias by the LRT towards the more complex model, several 

penalized forms of the LR have been proposed, of which Akaike’s Information 

Criterion (AIC) and the Schwarz Criterion (SC) or Bayesian Information Criterion 

(BIC) are the best known. 

3.8.2 AIC 

Akaike (1973) introduced a penalized maximized likelihood method for choosing 

between models. For model iM , the Akaike’s Information Criterion (in a slightly 

modified form) is: 

 ( ) ( )ˆlog | ,i i i iAIC M f M k= −y �    (3.23), 

where ˆ
i�  is the maximum likelihood estimate of �  and ik  is the number of parameters 

estimated in model iM . The model with the largest AIC is the preferred model. Model 

complexity is penalized on the grounds that the complex model should achieve a higher 

likelihood than a simpler model (meaning a model with fewer fitted parameters). Thus 

if two models produce the same likelihood, then the simpler model will be favoured. 

The AIC was designed to choose the model that best reproduced the data in terms of the 
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predictive distribution using each model’s maximum likelihood parameter estimate. 

Thus, only the optimal parameter set in terms of likelihood is used to judge the models 

performance. The Bayesian perspective of the AIC, as discussed in Kass and Raftery 

(1995) is that ‘such a predictive distribution is incorrect because it does not incorporate 

the uncertainty about parameter values and model form’. 

3.8.3 Schwarz Criterion 

Wasserman (2000) notes that the log marginal likelihood can be approximated by: 

 ( )( ) ( )( ) ( )ˆlog | log | , log log 1 (1)
2
k

p M f M T O� �= − + +� �
	 


y y �  (3.24), 

where (1)O  refers to an error independent of T . This leads to an approximation of the 

log BF known as the Schwarz criterion (see also the BIC in Kass and Raftery, 1995) : 

 

( ) ( ) ( )
( )

( )ˆ| ,
log , , log log

ˆ 2| ,

i i j i
i j i j

j j

f M k k
BF M M SC M M T

f M

� � −
� �≈ = +
� �
	 


y �

y �
 (3.25). 

Use of SC was proved to be consistent by Schwarz (1978) for linear exponential 

models. A proof for general model types has not yet been produced, but as Kass and 

Raftery (1995) explain, the approximation appears to hold much more generally.  

As Kass and Wasserman (1995 p.928) state, ‘at least for some priors, ( )exp SC  will be 

a poor approximation to the Bayes factor and thus a dubious quantification of evidence 

in favour of a model’. As we will discover in the case study, this error can compromise 

model selection using the interpretive scale in Table 3.1 especially if there is insufficient 

data to unequivocally show one model is superior to another. On the other hand, priors 

can be chosen such that the error has the size 1 2( )O T −  (see Wasserman, 2000) - the unit 

information prior, a prior based on the Fisher information (Kass and Wasserman, 1995) 

is an example of such a prior. Unfortunately, the requirement of using certain priors 

limits the flexibility of prior specification such that even in cases where the prior 

distribution is ‘known’ to some degree, it cannot be used. 
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3.8.4 Posterior Bayes Factor 

Aitkin (1991) introduced the posterior Bayes factor (PBF) to reduce the sensitivity of the 

Bayes factor on the choice of parameter prior, particularly regarding Lindley’s paradox. 

Instead of averaging the likelihood over the parameter prior as for the marginal 

likelihood in the BF, Aitkin suggested averaging over the parameter posterior to yield: 

 ( ) ( )
( ) ( )

| , | ,
( , )

| , | ,
i i i

i j

j j j

f M p M d
PBF M M

f M p M d
= �
�

y � � y �

y � � y �
 (3.26). 

The PBF is intuitively attractive in that it averages the likelihood over the posterior, or 

fitted distribution. This procedure uses the posterior in judging a model as do the widely 

practiced posterior predictive tests (see Gelman et al., 1995 p.167). Hence, we can judge 

the model’s ‘postdictive’ performance (see commentary of Aitkin, 1997 by Dempster). 

However, the PBF has not been recommended by Kass and Raftery (1995) as formally 

speaking ‘the procedure has little Bayesian justification’ – the PBF cannot be used in 

place of BF in (3.18) hence denying use of posterior odds. Nonetheless, it is particularly 

simple to evaluate using MCMC methods. Gelfand and Dey (1994) show that an 

asymptotic approximation to the PBF is: 

 

( ) ( )
( )

( )ˆ| ,
log , log log 2

ˆ 2| ,

i i j i
i j

j j

f M k k
PBF M M

f M

� � −
� �≈ +
� �
	 


y �

y �
 (3.27). 

This makes clear that the PBF is another penalized form of the likelihood ratio – see 

Gelfand and Dey (1994) for further details. 

3.8.5 Asymptotic consistency 

The BF along with the SC is appealing in that given a large number of samples it will 

choose the true model; a property that can not be claimed for the LRT (p-tests), PBF or 

the AIC (Aitkin, 1997). Conversely, when a large number of samples are not available 

there are cases where the BF chooses the wrong model while other methods such as 

PBF or AIC choose the correct model (Zhang, 1993). As Wasserman (2000) observes, 

for small samples there has been no systematic study to test the ability of each method 

of model choice. 
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3.8.6 Other Methods 

No attempt has been made here to exhaustively describe model selection methods 

related to the formal Bayesian method (for an overview of Bayesian model selection 

variants and computational methods see Ntzoufras, 1999). Rather, those which seemed 

most easily applied given that we were already using MCMC methods for posterior 

sampling were considered. Recent work has focussed on cross validation techniques 

(see Gelfand and Dey, 1994), in particular methods related to the reference approach 

such as intrinsic Bayes factors (Berger and Pericchi, 1996) and fractional Bayes factors 

(O'Hagan, 1995). Bernardo and Rueda (2002), whilst maintaining a reference approach, 

develop a Bayesian hypothesis testing method in a formal decision setting. An alternate 

idea that uses the posterior distribution of the likelihood is outlined in Aitkin (1997). 

This method is appealing in that conclusions consistent with the posterior distribution of 

parameters can be made. More recently, the Deviance Information Criterion (DIC) has 

been proposed by Spiegelhalter et al. (2002) for use in hierarchical modelling where the 

number of parameters is not clearly defined. Related to the cross validation measures 

mentioned previously are the widely practiced posterior predictive tests (see Gelman et 

al., 1995 p.167). 

3.9 MCMC Estimation of the Bayes factor 

Whereas calculation of the asymptotic approximation to the BF using the SC is 

straightforward, there is concern that it may not adequately approximate the BF. We 

have seen that the SC may have an error of order O(1) in approximating the numerator 

and denominator terms in the log BF. A more accurate estimate of BF may be desired, 

particularly if data samples are not large. Given our use of MCMC methods to evaluate 

the posterior distribution, this section focuses on the estimation of the BF using MCMC 

methods.  

An MCMC method generates samples from the posterior distribution. At the ith iteration 

of the MCMC algorithm a parameter ( )i
�  is drawn from the posterior distribution 

( | , )p M� y . To minimise additional computation we would like to compute the 

marginal likelihood using the information produced by the MCMC method. We 

consider several such estimators. 
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3.9.1 Newton-Raftery Approximation 

Newton and Raftery (1994) proposed a simple estimator based on the harmonic mean of 

likelihood function. Starting with the identity: 

 ( )1 |p M d= � � �  (3.28), 

and using (3.1) to substitute for ( )|p M�  yields: 

 

( ) ( ) ( )1 1
| ,

| | ,
p M d

p M f M
= � � y �

y y �
 (3.29). 

Noting that ( )1 |p My  is the posterior expected value of ( )1 | ,f My �  the expectation 

can be approximated by the arithmetic mean to yield the Newton-Raftery estimator: 

 
( ) ( ) ( )
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( )
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1

1 1
| | , , 1,..,
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ns
i

NR i
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p M p M i ns
ns f M

−

=
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= ← =� �

 
� �
�y � � y

y �
 (3.30), 

where ( )( ) | ,i p M←� � y  denotes samples are drawn from the posterior distribution. 

Kass and Raftery (1995) note that, although this estimator is consistent, it is unstable – 

the occasional small likelihood can have a marked effect on the estimator. 

3.9.2 Gelfand-Dey Estimate 

Gelfand and Dey (1994) proposed a potentially more stable estimator than the Newton-

Raftery estimator. For any proper density ( )τ �  we have: 

 ( )1 d= τ� � �  (3.31). 

Using the identity (3.1) yields: 

 
( ) ( ) ( )

( ) ( )
| , |

1 � d
| , |

p M p M

f M p M
= �

� y y
� �

y � �
 (3.32), 

which upon rearrangement yields: 

 

( )
( )

( ) ( ) ( )�1
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| | , |
p M

p M f M p M
= �

�
� y �

y y � �
 (3.33), 
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 from which follows the Gelfand-Dey estimator: 
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� �
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 (3.34). 

Kass and Raftery (1995) observe that provided the tails of ( )τ �  are sufficiently thin, 

this estimator is stable. This can be intuitively understood by noting that if 

( ) ( )|p Mτ =� �  (assuming ( )|p M�  is proper) the Gelfand-Dey estimator reduces to 

the Newton-Raftery estimator. The tails of ( )τ �  must be sufficiently thin to ensure that 

the occasional small likelihood does not exert excessive influence on the estimate. In 

this study the density chosen for ( )τ �  was the multivariate normal with mean and 

covariance determined by the posterior samples { }( ) : 1,...,i i ns=� . To help ensure that 

the tails were thin enough the sample covariance was scaled by factors ranging from 0.1 

to 1.0. The marginal likelihood calculated did not vary significantly over this range, 

indicating that results were not affected by the tails, and therefore that the tails were 

sufficiently thin. For the results shown a scaling factor of 1.0 was used. 

3.9.3 Other Methods 

Chib (1995) and Chib and Jeliazkov (2001) give an alternate stable and consistent 

method for situations where Gibbs and Metropolis-Hastings MCMC sampling methods 

are used respectively. Some other methods combining approximations and simulation 

are surveyed within DiCiccio et al. (1997). 

3.9.4 Posterior Bayes factor 

The PBF can be simply estimated using: 

 ( ) ( ) ( )(i) ( )

1

1
| | , , | ,

ns
i

PBF
i

p M f M p M
ns =

= ←�y y � � � y  (3.35). 

3.9.5 Prior Estimator 

Given the instability of the Newton-Raftery estimator and the potential instability of the 

Gelfand-Dey estimator, we estimate the marginal likelihood directly as a check. 
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Provided that samples can be drawn from the prior, the prior estimator of the marginal 

likelihood, sometimes referred to as the golden method, is: 

 ( ) ( ) ( )(i) ( )

1

1
| | , , |

ns
i

prior
i

p M f M p M
ns =

= ←�y y � � �  (3.36). 

Although this estimator is stable, a large number of samples may be required to obtain 

accuracy, with more samples required as more parameters are introduced or as the prior 

is made more diffuse. 

3.10 Case Study: Modelling Persistence in Annual Rainfall 

This case study applies BMS to rank three models of inter-annual persistence in annual 

rainfall. For each of these models the Metropolis algorithm is used to sample from the 

posterior distribution. Accordingly, the estimators described in Section 3.9 were used to 

estimate the marginal likelihood ( )|p My . The objective is to critically evaluate 

competing model selection methods (in particular BMS). This provides the interpretive 

framework for Chapter 5 where different models of regional persistence are assessed. 

3.10.1 Data 

The case study data consisted of 137 years of continuous daily point rainfall, extending 

from January 1859 to April 1997 and recorded at the official Australian Bureau of 

Meteorology site, Observatory Hill Sydney. The daily data was aggregated up to the 

annual scale using a September-August water year. September was used as the start of 

the water year as this allowed best identification of the HMM parameters (Thyer, 2001). 

Of the 137 years of daily data, there were less than eight days flagged as being corrected 

values. This is considered to have insignificant effect on annual totals. 

3.10.2 Competing Models 

Several model selection techniques will be applied to discriminate between three 

models of annual rainfall. 

Independent transformed normal model IND 

The independent transformed normal model (IND) is the simplest model considered. It 

was selected as a candidate model because a priori it was expected that long-term 
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persistence in annual rainfall is likely to be weak. The IND model assumes the annual 

rainfall series y = (y1,..,yn) is independently and identically distributed. A transformed 

normal distribution is assumed to describe the marginal distribution. After transforming 

the annual rainfall yt using the Box-Cox transformation: 

 

( )

1
0

log 0

t

t

t

y
z

y

λ� − λ ≠
= λ�

 λ =�

 (3.37), 

 the transformed rainfall zt is assumed to follow a truncated normal distribution. The 

parameter vector for the IND model is ( )y y� ,� ,�′ =�  where µy and σy are the mean and 

standard deviation of the rainfall y. 

Autoregressive lag one model AR1 

The lag-one autoregressive model, a generalization of the IND model, has been the 

model of choice for use in annual hydrologic time series in Australia (Grayson et al., 

1996, Srikanthan and McMahon, 2001). After transforming the rainfall using (3.37) the 

model has the form: 

 ( )t t 1z � z � 	t−= + φ − +  (3.38), 

where µ is the mean of the transformed rainfall z, φ is the serial correlation and εt is an 

independent truncated normal random variable. The parameter vector is 

( )y y� ,� , ,�′ = φ� . If the autocorrelation parameter φ is set to zero, the model reduces to 

the IND model. This is an example of a nested model as discussed in Section 3.6. 

Two State HMM 

As a discussion of the HMM was given in the previous chapter it will not be reiterated 

here. We are dealing in this case with the single site simplification of that model. 

The two state HMM can degenerate to a two state Gaussian mixture model. To 

demonstrate this relationship, the parameterisation of the mixture model must be shown 

to have a functional relationship with the parameters of the HMM. A mixture model 

does not have any temporal Markovian dependency. That is, the probability of being in 
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a particular state does not alter from one time-step to the next, and does not depend on 

previous time-steps. Hence, for the two state HMM to act as a mixture model, the 

following relationship must hold:  

 ( ) ( )1|t t tp r r p r− =  (3.39). 

The right hand side of this equation is the marginal probability of being in a particular 

state. For the stationary HMM, this probability does not change in time, thus:  

 ( ) ( )1t tp r p r −=  (3.40). 

The marginal probability of being in a dry state is given by total probability: 

 ( ) ( ) ( )
( ) ( )

1 1

1 1

|
|

t t t t

t t t

p r D p r D r W p r W
p r D r D p r D

− −

− −

= = = = =
+ = = =  (3.41). 

Using (3.40) and the fact that ( ) ( ) 1t tp r D p r W= + = =  yields the marginal probability:  
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| |
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t
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p r W r D p r D r W
−

− −

= =
= =

= = + = =
 (3.42), 

with an analogous result for the wet state probability ( )tp r W= . Noting that (3.39) 

requires that ( ) ( )1|t t tp r D p r D r W−= = = =  it immediately follows that a two state 

HMM degenerates to a mixture model if:  

 ( ) ( )1 1| | 1t t t tp r W r D p r D r W− −= = + = = =  (3.43). 

An identical result is obtained using ( )tp r W= . Thus, we have the simple relation that 

if the transition probabilities sum to one, the HMM degenerates to a mixture model. 

3.10.3 Parameter Priors 

Proper but disperse parameter priors were chosen so as to allow the data to dominate the 

posterior distribution. Nonetheless, it was ensured that the priors were proper in order to 

avoid the marginal likelihood becoming infinite. Table 3.2 presents a summary of the 

priors. The parameters defining the shape of the priors, referred to as hyperparameters, 

were varied to test the sensitivity of the results to prior specification.  
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Table 3.2 lists firstly the parameter of interest, then the model(s) that the parameter 

applies to. The prior distribution used for the parameter is also defined. Also listed in 

Table 3.2 are the lower and upper bounds for the prior distributions. In some cases 

parameter bounds and hyperparameter values were varied to check the sensitivity of the 

BMS results to prior specification. The range over which each bound or hyperparameter 

was varied is given where such sensitivity was tested. 

Table 3.2   Parameter prior distributions and bounds 

Parameter Model(s) Prior distribution Lower 
bound 

Upper 
bound 

Hyper-
parameters 

µy 
IND, AR1, 

HMM ( )2
0~ ,k yNµ µ σ κ  0 ∞ 0 yµ = , 1κ =  

σy 
IND, AR1, 

HMM ( )2 2 2
0 0~ ,y Invσ − χ ν σ 0 ∞ 2 2

0 sσ = , 0 2ν =  

λ IND, AR1 ( )2
0~ ,N λλ λ σ  Max 

(0,λο−2σλ) λο+2σλ 
λo=0.5, 

  =[0.25,1.0]λσ  

φ AR1 ( )2
0~ ,N φφ φ σ  -1.0 1.0 

φο=0.07, 
  =[0.15,0.5]φσ  

Pij HMM ~ijP Uniform  [0.0,0.05]  [0.5,1.0]  not applicable 

Each of the prior distributions are briefly discussed. 

Mean µµµµy and variance σσσσ2222
y 

The same priors for the mean µy and variance σy
2 were used for all models so as to not 

favour one model a priori over another. An empirical-Bayes approach was adopted to 

ensure that, in expectation, the priors were consistent with the gross characteristics of 

the data. Accordingly the sample mean y  and sample variance 2s  (see Section 3.6.1) 

were used to define the prior means. The prior degrees of freedom (κ and ν0) were kept 

to a minimum to ensure that the priors remained diffuse. All means were truncated 

below zero, while for the IND and AR1 models there was no upper bound. The HMM 

wet mean had the dry mean as a lower bound, while the HMM dry mean had the wet 

mean as an upper bound. For a full explanation of this prior see Thyer (2001). 
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Box-Cox transform parameter λλλλ 

For the AR1 and IND models, the mean of the Box-Cox transformation parameter λ 

was set to 0.5. This represents the midpoint point between the normal and log-normal 

distributions. It was considered that most data sets would lie between these two 

extremes. The standard deviation σλ was sensitivity tested with values ranging from 

0.25 to 1.00. The resulting normal distribution was truncated at both ends at two 

standard deviations from the mean λ0. 

Serial correlation φφφφ    

In a study of 40 high quality annual rainfall data sets spread throughout Australia by 

Srikanthan et al. (2001), the mean annual serial correlation was found to be 0.07. This 

was considered to be an appropriate value for the prior mean φο. Standard deviation of 

φ was varied from the relatively vague value of 0.5 to the moderately sharp value of 

0.15. The φ  parameter has bounds of [ ]1,1− . 

HMM Transition Probabilities 

A uniform prior was used for the transition probabilities. The least informative prior 

was a uniform distribution over the interval [ ]0,1 . This prior was judged to be 

unreasonable in the context of this study because it allows the HMM to operate as a 

single-state model. For example, if a transition probability of 0.01 were assigned to a 

state then the average residence time in that state is 100 years. Given that our data is 140 

years in length, this would likely result in one state dominating the entire series. 

Effectively the HMM has become an IND model without the benefit of the Box-Cox 

transformation. Because the HMM was designed to simulate long-term persistence, it is 

reasonable to a priori exclude transition probability combinations which produce single 

state behaviour. Thyer (2001) suggests state residence times could range from 2 years 

under the influence of the El Niño Southern Oscillation to several decades under the 

influence of the Inter-decadal Pacific Oscillation. Accordingly, the most informative 

prior on the transition probabilities was a uniform distribution over the interval 

[0.05,0.5]  which corresponds to expected state residence times lying between 2 and 20 

years. 
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3.10.4 Model Priors 

All model priors were set equal in this study, and no variation was undertaken. For non-

nested models, we believe that the interpretive scales given for the BF provide sufficient 

leniency for the subjectivity of prior model probability specification. In nested model 

comparison scenarios, the assumption of equal priors may not be as justifiable – why 

give equal weight to one parameter set versus an infinite selection of others?  

3.10.5 Results 

Because our primary focus is on formal BMS, results relating to Bayes Factors will be 

presented first. Comparisons with other model selection methods are then presented.  

As many combinations of the prior specifications (summarized in Table 3.2) were 

tested, not all of the calculated Bayes Factors are presented. For ease of interpretation 

Table 3.1 only presents the maximum and minimum values.  

Table 3.3   Maximum and minimum Bayes Factors and interpretation 

Models Max BF Strength* Min BF Strength 

IND/AR1 1.3 W - IND 1 / 4.5 P- AR1 

IND/HMM 1.7 W- IND 1 / 3.4 P- HMM 

AR1/HMM 5.1 P-  AR1 1 / 3.0 W- HMM 

*Note: W=weak, P=positive 

The maximum BF can be interpreted as the maximum support in favour of the first 

model; while the minimum BF gives the maximum support for the second model. In all 

the cases tested, the maximum BF values occurred where the first model had a small 

prior range or variance and the second model had its largest tested range or variance.  

No strong conclusions from the pairwise comparisons can be made, with the BF 

favouring the first model when it has sharp priors, and the second model when it has 

flatter priors. The IND model fairs the worst in that both the AR1 and HMM have 

positive strength minimum BF’s, while having weak maximum BF’s. However, for the 

comparison between the AR1 and the HMM, the maximum BF for the AR1 has positive 

strength, while the minimum BF is almost classed positive for HMM also. This 
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demonstrates the effects that prior specification can have on the conclusions made, 

especially in cases where large samples are not available.  

Overall, it was concluded that both the AR1 and HMM are superior to the IND model. 

However, it could not be concluded which of the models, AR1 or HMM, was superior. 

The relatively strong result in favour of AR1 for the sharp AR1 prior versus the broad 

range prior on HMM is explainable in that the HMM is quite complex compared to the 

AR1. Many HMM parameter combinations represent situations that could not be 

identified given the amount of data, and therefore parameter bounds were tightened to 

cut out these situations (why model situations that are very unlikely to occur). Also, as a 

uniform prior distribution was used for the HMM parameters, and sharper Gaussian 

priors were used for the AR1, the priors tend to favour AR1 slightly a priori. 

Table 3.4 shows a comparison of the three Bayes Factor estimation methods used. The 

Gelfand-Dey (GD) estimates agreed with values calculated using the prior estimator 

(the golden method). The Newton-Raftery (NR) estimate of the BF was not as accurate 

as the Gelfand-Dey method. Although not shown here, the Gelfand-Dey estimates of the 

marginal likelihood were consistent from one simulation to the next. As such the 

Gelfand-Dey estimates were used for Table 3.3 and subsequent comparison to other 

model choice methods. The Newton-Raftery method was not used as it was found to 

have a high degree of variability from simulation to simulation. 

Table 3.4   BF Calculation Methods 

 Bayes Factor 

Models Max Min 

 Prior GD NR Prior GD NR 

IND/AR1 1.4 1.3 1.0 1/4.9 1/4.5 1/8.8 

IND/HMM 1.7 1.7 1.8 1/3.4 1/3.4 1/ 11.5

AR1/HMM 5.0 5.1 5.1 1/ 3.01/ 3.0 1/ 3.6 

The PBF, AIC and SC were calculated for the three models and are compared to the BF 

in Table 3.5. It should be noted that the AIC was not designed to be judged using 

Jeffrey’s interpretive scale like the BF and SC. Rather, a ratio greater than one indicates 
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that the first model is preferred. Likewise the PBF cannot strictly speaking be 

interpreted using Jeffrey’s scale. 

Table 3.5   Related Model Selection Methods 

BF 
Models PBF AIC* SC* 

Max Min 

IND / AR1 1/3.3 1/1.7 2.6 1.3 1/4.5 

IND / HMM 1/8.3 1/1.1 70.1 1.7 1/3.4 

AR1/ HMM 1/2.6 1.5 27.1 5.1 1/3.0 
*Note: The AIC and SC as defined in equations (3.23) and (3.25) have been 

exponentiated to give values in comparable terms to the BF. 

Changes in specification of the prior did not affect the penalized likelihood measures as 

the maximum likelihood estimate was within the parameter bounds in all cases. The 

PBF was also unaffected, presumably due to the majority of the posterior distribution 

also lying within these bounds. 

The PBF distinctly favours the HMM followed by AR1 and then the IND model. The 

AIC ranks the models as AR1, HMM and then IND. The SC strongly favours the IND, 

AR1 and then HMM. Compare this to the BF which put the AR1 and HMM on about 

level terms, with IND lagging behind. Which one of these methods is the correct one 

and what conclusions, if any, can we draw from such a range of results? 

As an additional note, in the case of a nested model, the posterior distribution of 

parameters can be used for model selection as mentioned in Section 3.7.4. Figure 3.1 

shows a histogram of the posterior distribution for the φ parameter of the AR1 model. It 

can be easily seen from this plot that it is unlikely that the data came from the IND 

model (φ=0), as only 3% of the posterior probability is less than zero. Calculation of the 

posterior distribution does not require model prior specification. Hence, the assumption 

we have used regarding BF, that each model has equal prior probability, is not needed. 

This method can also be applied to the HMM in determining whether the HMM 

hypothesis is justified compared to a special case of the HMM, the two state mixture. 

As was discussed in Section 3.10.2, the HMM degenerates to a simple mixture model if 

the sum of the transition probabilities are 1. The posterior distribution of the transition 
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probabilities along with the transition probability sums is shown in Figure 3.2, with the 

solid line indicating the line along which the transition probabilities sum to one. The 

majority of the posterior cloud lies well away from the mixture line, justifying the 

Markovian assumption. 
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Figure 3.1   Posterior distribution of � for the AR1 model 
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Figure 3.2 Posterior transition probability (a) distribution and (b) sum histogram for the HMM. 

3.10.6 Discussion 

In a Bayesian framework the Bayes factor is the accepted formal model selection 

method. However, the BF can produce a range of results depending on the prior used. In 

this case study it is not clear whether the AR1 or the HMM is the superior model. This 

result is presumably influenced by the lack of data, with more data required to 

unequivocally identify the better model (whatever the selection method). 



63 

 Chapter 3 – Bayesian Modelling and Model Selection 

The Gelfand-Dey estimator of the BF was found to be more accurate than the Newton-

Raftery estimator and consistently repeatable. Although slightly more complex to 

calculate than the Newton-Raftery estimator, the accuracy of the Gelfand-Dey estimator 

justifies the effort. 

A variety of conclusions could be made from the comparison of the model selection 

measures. The PBF favoured the more complex model, but can not be justified 

theoretically from a Bayesian viewpoint. The AIC produces results very similar to the 

BF, but, again from a Bayesian perspective, this method cannot be justified because it 

disregards parameter uncertainty. 

The SC is a large sample approximation to the BF, but as demonstrated can suffer from 

gross errors. These errors are explained by (3.24) which reveals the asymptotic 

approximation which underpins the SC has errors of constant order in the log marginal 

likelihood. It is speculated that significant errors in the SC have arisen from use of 

limited data and comparison of two structurally very different models, AR1 and HMM. 

As Bayes factors are fundamental to BMS, our conclusions are based on the BF results 

in Table 3.3. The AR1 and the HMM are considered to model the data equally well. 

In nested-model comparisons, tests involving the posterior distribution of parameters 

appear to offer a more rational approach. Use of the posterior distribution avoids the 

need to assign equal prior probabilities to 0=� �  and the infinite set 0≠� � . However, in 

cases where many (nested and non-nested) models are compared, comparing posterior 

distributions of nested versus non-nested variants is not possible. Providing care is taken 

in elicitation of priors, and resulting inference, BMS offers a simple method of ranking 

models according to posterior model probability.  

3.10.7 Conclusion 

The Bayes factor represents the formal approach to BMS and is compared to related less 

justifiable approaches. Some of the typical perils of BMS such as Lindley’s paradox are 

identified, and simple steps to avoid them are described. The case study demonstrates 

that the BF is sensitive to prior parameter specification. This sensitivity introduces an 
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indeterminacy in BMS so that only models with distinctly superior performance would 

be unequivocally identified as the superior model. 

The Newton-Raftery estimate of the BF is found to be less reliable than both the 

Gelfand-Dey estimate and the golden method. The Schwarz criterion, although 

consistent, was found to be a poor approximation to the BF in this case study where 

only a small number of data samples were available and distinctly different models 

compared. This highlights the danger of relying on asymptotic approximations. In the 

remainder of the thesis the BF will be calculated using the Gelfand-Dey estimator rather 

than the simpler but less reliable SC. Of course, the stability and accuracy of the various 

estimates will be problem dependent, for example problems are possible with the 

Gelfand-Dey estimator with multimodal, skewed and thin tailed posteriors. However, 

the case study serves to provide a practical test of the estimators available for problems 

of moderate dimension where approximate normality around exists.  

The specification of model priors, in nested model testing, is identified as a possible 

difficulty associated with BF. The often assumed equal model priors for the nested 

model and its generalization can rightly be questioned. A posterior plot of the nested 

parameter can provide simple and clear evidence for model choice. In the case study, 

the posterior parameter plots showed that it was very likely that the AR1 model was 

preferable to the IND model, and also likely that the Markovian assumption of the 

HMM was justified compared to a non-Markovian mixture model. 

The AR1 and HMMs were found to be approximately on equal footing for the Sydney 

annual rainfall data. This result concurs with the results of Thyer (2001), who was 

unable to choose between the two using other informal methods such as posterior 

predictive checking of test repetitions and parameter identification.  

3.11 Bayesian Model Averaging 

So far in this chapter, model selection has been emphasised in a Bayesian modelling 

framework - choosing one model from a set { }1,..., nmM M  of candidate models where 

nm are the number of models. A natural extension to Bayesian model selection is model 

averaging. Model averaging refers to the process of estimating some quantity under 

each model jM  and then averaging the estimates according to how likely each model is 
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(Wasserman, 2000). This is the more general case of estimating a posterior quantity of 

interest as discussed in 3.3.1, with not only parameter uncertainty incorporated, but also 

model uncertainty:  

 ( ){ } ( ) ( )

( ) ( )( ) ( )
1

1

E G , G , , |

G , | , |

nm

j j
j
nm

j j j
j

M M p M d

M p M d p M

=

=

=

=

��

� �

� � � y �

� � y � y
 (3.44), 

where ( )G ,M�  is the quantity of interest. For Bayesian model averaging (BMA), we 

are no longer choosing the ‘best model’, but weighting the predictions depending on the 

posterior model probabilities. This is the strength of model averaging- there is no need 

to rely on vague rules such as Jeffrey’s Bayes factor interpretive scale (Table 3.1) to 

accept or reject a particular model. 

As there were many model variants tested in the following chapters, Bayesian model 

averaging rather than BMS was chosen for presentation of results. It is believed that this 

method is more justifiable, in that model uncertainty is also accounted for within 

prediction. Somewhat analogously to the argument for incorporating parameter 

uncertainty, posterior model probability fully accounts for uncertainty, whereas methods 

choosing a single model may produce over confident predictions. 

A quantity of particular interest in this study is the hidden state series defined in Section 

3.4.2.  BMA is used in the following chapters to produce the state series upon which the 

small time-scale rainfall model DRIP will be conditioned. 

3.12 Model-Parameter Product Space Sampling Techniques 

In the applications to come in later chapters, model choice/averaging is to be undertaken 

between many models. An MCMC technique that is more efficient than sampling from 

individual models, one at a time to produce posterior quantities of interest, such as 

model weight, would be advantageous. Model-Parameter product space samplers 

provide an alternative to sampling from individual models, and can provide a more 

efficient method of evaluating posterior model weight than evaluating marginal 

likelihoods individually. MCMC Model-Parameter product space samplers describe a 

sampling technique where not only the parameter set is a sampled, but the model is 
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sampled also. Of the product space searches available, the Metropolised Carlin-Chib 

(MCC) sampler (Godsill, 1998, Dellaportas et al., 2002) was trialled due to it being a 

simple generalisation of the Metropolis-Hastings algorithm. Therefore, there was 

minimal coding involved moving from the MH sampler to MCC. Although, not used in 

the final production of results due to implementation difficulties, it deserved discussion 

as a method of MCMC model sampling. Its relationship to the MH algorithm is now 

discussed. 

Model-Parameter space product samplers such as the reversible jump (RJMCMC) 

techniques of Green (1995) or the MCC sampler could have been applied to the test 

problem in the previous section. Because the product space methods sample from model 

to model as well as within parameter space, it is easier in cases involving a limited 

number of models to implement individual estimates of the marginal likelihood rather 

than one mega-simulation as detailed in Han and Carlin (2000). 

3.12.1 Metropolised Carlin-Chib sampler 

A model-parameter product space MH sampler was proposed (independently) in 

Dellaportas et al. (2002), Godsill (1998) and Besag (1997). These samplers present 

essentially the same idea - the discussion and derivation below follows Godsill (1998). 

To see how this algorithm works let us first define the support over which the sampler 

operates. Consider the ‘pool’ of parameters  ( )1
,...,

nmM M=� � �   such that M M∈ Θ�  is 

the parameter space pertaining to model M  with M ∈ M , where ( )1,..., nmM M=M  and 

nm are the number of models. The support for the overall product space ( , )M ∈ Ω�  is 

given by:  

 
M

M ∈

Ω = × Θ∏
M

M  (3.45). 

The posterior distribution for the full composite space (with the parameters used in 

model M , signified by M� , and parameters not used in model M  signified by M−� ) is 

expressed as:  
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 (3.46). 

As we have now defined a full composite space over which the Metropolis-Hastings 

sampler can operate (the dimension of Ω  does not change), we use an acceptance ratio 

of the same form as (3.6), replacing the posterior identity with (3.46) to give:  

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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(3.47). 

Now, defining the product space jump distribution from ( , )M �  to * *( , )M �  as:  

 ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

* * *

* * *

* * *

* * * * * * * *

* * * * *

* * * * *

, | , | , , , | , , | ,
| , | , |
| , | |

M M M

M MM M M

MM M M

J M M J M M J M M J M M
J M J J M M
J M J J M M

−

−−

−

=
=
=

� � � � � � � �

� � � � �

� � � �

 (3.48). 

Such simplifications are possible as we are free here to choose any jump distribution we 

desire that has coverage over ( ),M � ; that is, any function which has positive 

probability of jumping to all points in Ω . Inserting this identity into (3.47), and letting 

( ) ( )| , | ,M M M MJ M p M− −=� � � �  for any  ( ),M �  gives:  

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

** *

*

* ** * * * *

* *

| , |

| , |
M MM M

M M MM

J M M Jp M p M p M
r

p M p M p M J M M J
= ×

� �y � �

y � � � �
 (3.49). 

Using this acceptance ratio in the following algorithm yields the Metropolised Carlin-

Chib sampler: 

1. Draw a starting model (0)M , and an associated parameter vector 
(0)

M�  that has a 

positive posterior probability. 

2. For i=1,2,…: 
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a) Sample candidate model *M  from model jump distribution ( )* ( 1)| iJ M M −  

b) Conditional on the proposed model *M , sample a candidate point  *
*
M
�  from 

a jumping distribution ( )*
* ( 1)| i

MM
J −� � .  

c) Calculate the ratio of densities according to (3.49). 

e) Set 

 
( ) ( ) ( )

( )
* *

( ) ( )
( 1) ( 1)

, with probabilitymin ,1
,

, otherwise.
i i

i i

M r
M

M− −

�
= �

�

�
�

�
 (3.50).  

f) Check convergence – If sufficient samples taken, stop. Otherwise continue. 

Note here that we now have a conditional proposal step: first we propose a new model, 

and then dependent on this we propose a parameter set. However, the acceptance ratio 

takes into account both jumps. This is an example of a Gibbs within Metropolis sampler 

(the model parameters are proposed conditional on the proposed model).  

Notice also in the jump distributions and the acceptance ratio that we are only interested 

in parameters associated with the current model ( 1)i
M

−� , and the proposed model *
*
M
� . 

The complementing parameters in the ‘pool’ ( 1)i
M
−

−�  and *
*

M−
�  are not generated or stored. 

Thus  ( )( ) ( ),i iM�  is effectively equal to ( )( ) ( ),i i
M M� . 

3.12.2 Relationship between MCC and other model space samplers 

The derivation given here is a simplification of that in Godsill (1998). In that paper, 

parameters were allowed to be shared between models. This particular algorithm was 

coined the Metropolised Carlin-Chib sampler due to it being the general (Metropolised) 

case of a model-parameter sampler employed by Carlin and Chib (1995). The Carlin-

Chib sampler uses Gibbs steps to generate the model parameters M�  and M  separately. 

Unfortunately, breaking the sampling into full conditional steps means that we also need 

to generate parameters not used in the proposed model *
*

M−
� . These parameters are 

generated from the pseudoprior ( )| ,M MJ M−� � , which now requires specification. This 

term cancelled out of the MCC algorithm. However, in the Carlin-Chib sampler we 
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must generate both the M�  and M−�  parameter vectors at every step. In cases where 

many models are being sampled, this specification and generation becomes impractical 

(Godsill, 1998, Han and Carlin, 2000). 

The reversible jump sampler introduced by Green (1995) is a special case of the product 

space sampler where there are deterministic moves proposed between parameter spaces. 

Dellaportas et al. (2002) note that this flexibility, allowing ‘the model parameters of the 

proposed model to depend on the current model in a totally general way’, is a great 

strength of reversible jump. However, this generality can also be a burden, with the 

jump functions requiring specification. The MCC method appeared simpler to 

implement and apply, especially considering minimal coding changes are required from 

sampling using MH. 

3.12.3 Specification of jump distributions 

In the studies undertaken in this thesis the model jump distribution *( )J M M  was set 

uniform:  

 ( )* *| ( )
1

J M M J M

nm

=

=
 (3.51), 

while the parameter jump vector *
*( )MM

J � �  was made independent of the previous 

models parameter vector M�  according to:  

 ( ) ( )
( )

* *

* *

* *

2

|
ˆ ,

MM M

M M

J J

N c

=
Σ
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��
 (3.52), 

with a normal distribution located at the modal parameter set for model *M  (found 

previous to sampling). The covariance *M
Σ  is (as before) an estimate taken from using 

an inversion of the Hessian taken at the modal parameter set. A scaling parameter c  is 

used to expand the covariance to ensure the estimated covariance has larger scale than 

the posterior distribution. We use a scaling value of 1.5c = . 

The jump distributions used here are equivalent to an independence sampler in model 

space. Dellaportas et al. (2002) state that using such an approach works best when 
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( )*J M  is a reasonable approximation to ( )* |p M y , and ‘perhaps more importantly’  

when ( )*
*
M

J �  is a reasonable approximation to ( )*
* *| ,
M

p M� y   for every *M . In other 

words, the algorithm above will work well if the scaled normal estimate of the 

parameter distribution is a reasonable estimate of the posterior distribution.  

The approach above is viable when the computational time required to calculate ˆ
M�  and 

MΣ  for all models is not prohibitive, and the resulting approximation of the covariance 

is approximately correct. If the approximation of the covariance is poor, given that there 

is no adaptation of covariance according to previous samples, the sampler will be 

inefficient. In high dimensional constrained parameter problems such as that 

encountered in this thesis, finding a good approximation to the posterior covariance is 

often difficult. The method of Hessian evaluation used in this thesis relied on finite 

differences to evaluate individual components of gradient. Given all the individually 

evaluated Hessian components, a Choleski decomposition was then used for inversion. 

Often the Hessian was found to be non-positive definite/ill conditioned, thus not 

permitting inversion. More advanced covariance estimation techniques may provide 

closer approximation to the posterior covariance (provided the posterior is 

approximately Gaussian). As the sampler was found to be quite inefficient due to these 

poor covariance estimates compared to individual model MH sampling, MH sampling 

was used for the results in following chapters. Apparently, the adaptation of the MH 

sampler covariance provides the main advantage, allowing the jump distribution to 

better approximate the posterior surface as sampling continues. 

Considerable refinement of the algorithm used here is possible, especially regarding 

covariance estimation. Also, refinement of the model to model jump probability could 

be investigated to promote efficiency. A possible avenue of work would be generalising 

the parameter jump distribution adaptation method of Haario et al. (2001) so as to also 

include a model indicator. As the Haario et al. (2001) sampler is ergodic, it could be 

applied with confidence, rather than using ad hoc adaptation rules which may or may 

not be sampling from the posterior. This method would therefore adapt the model jump 

probability in tandem with the parameter jump probability. With such adaptation, it is 
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expected that much more efficient samplers would result. This subject is left for future 

work. 

3.12.4 Posterior model probabilities from product space samplers 

To estimate the posterior probability of model M, ( | )p M y , using posterior samples 

from ( , )M �  provided by this acceptance ratio the following integral needs to be 

evaluated:  

 ( ) ( )| , |p M y p M y d
Ω

= Ω� �  (3.53). 

Using numerical integration we have:  

 ( ) ( )( ) ( )

1

1
| , , |

ns
i i

j j
i

p M y I M M p M y
ns =

� �= = Ω ←� �� �  (3.54), 

where ( )i
jI M M� �=� � is an indicator function with value 1 when ( )iΩ  sampled model 

jM , and value 0 otherwise. 

3.12.5 Discussion of Model-Parameter product space samplers 

In testing not presented in this thesis, the MCC sampler described in this section 

performed less efficiently than sampling from within individual models. Therefore the 

individual model sampler (using the Gelfand-Dey estimate of marginal likelihood) was 

applied in the case studies of Chapter 5. Although not used in producing the results of 

this thesis, the MCC sampler with refinement could provide a more efficient method of 

evaluating posterior model probabilities than sampling from individual models. 

Alternatively, Reversible Jump may be more efficient than the MCC, due to the 

allowance for specification of jumping rules between parameter spaces. The final word 

is left to Han and Carlin (2000) who caution that all of the methods of calculating 

marginal likelihoods that they discuss (including RJMCMC and MCC) ‘require 

substantial time and effort (both human and computer) for a rather modest payoff, 

namely a collection of posterior model probability estimates, possibly augmented with 

associated standard error estimates’.  
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3.13 Conclusion 

This chapter outlined the Bayesian modelling calibration framework used in this study. 

An MCMC sampling technique, the random walk (adaptive) MH sampler was 

introduced and compared to the Gibbs sampler, the model calibration technique used in 

the study of Thyer (2001). The MH sampler was chosen in this study due to its 

comparative simplicity. Use of the MH sampler obviated the need to simulate the 

hidden state series as part of the sampling process, thus reducing the chance of 

occurrence of ‘trapping state’ encountered for the Gibbs sampler for HMM problems. 

This simplification arose because the MH sampler could employ the Baum-Welch 

likelihood formulation for the HMM which integrated out the hidden state.  

The closely related topic of Bayesian Model Selection was introduced and discussed in 

detail. A test study demonstrated some of the perils involved in BMS, along with giving 

comparisons to other widely used model selection methods. Significantly, in cases 

where there is little data or highly dissimilar models, the Schwarz Criterion (or BIC) can 

give a poor approximation to the Bayes Factor. The method of Bayes factor estimation 

found to be most accurate was the Gelfand-Dey estimator. 

A mega-model (model-parameter product space) sampling technique, the Metropolised 

Carlin-Chib algorithm was also discussed for use in situations where there are many 

models to choose from. However, the MCC applied was found to be less efficient than 

using the MH sampler on individual models. Thus, the MH and the associated Gelfand-

Dey estimate of the marginal likelihood were chosen for model selection/averaging in 

the remainder of this thesis. 

Bayesian model averaging, the extension of Bayesian principles to model space, was 

discussed. This method is preferred to model selection as it removes the need to select 

particular models according to some (usually ad hoc) criteria. Methods of generating 

quantities of interest, such as the HMM hidden state probability series, were presented 

in terms of generating from one model, or averaging over all models tested. This model 

averaging technique is to be used in Chapter 5 where it is applied to the HMM and its 

generalisations to be described in the next chapter. 
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Chapter 4 Extensions to the HMM : The Switch and 

Regional HMM  

4.1 Introduction 

The HMM assumes a common (or regional) climate state occurs simultaneously across 

all sites used in an analysis. Can this assumption be justified for an arbitrarily chosen set 

of sites? Local meteorological anomalies can mask the influence of large scale climate 

phenomena. Also, as sites become further apart it is less likely they are affected by the 

same climate controls. The current HMM methodology advanced by Thyer (2001) 

cannot assess the soundness of the regional climate state assumption satisfactorily. Two 

generalisations of the HMM are proposed to specifically address this assumption: the 

Switch HMM and the Regional HMM. 

A Switch HMM is introduced as a new approach to modelling the effects of regional 

and local interactions. As before, the regional climate state follows a Markov process 

thereby providing the means for simulating long-term persistence. However, at 

individual sites within the region local meteorological anomalies may affect the hidden 

regional state. Therefore, a second layer is added to the HMM to simulate at-site 

anomalies from year to year, thus giving each site the opportunity to ‘switch’ from the 

overall regional climate state. 

The Regional HMM, rather than allowing at-site anomalies to occur, relaxes the 

assumption of a single controlling regional climate state by allowing multiple climate 

regions within the study region. Each of these climate regions has individual climate 

state series with an associated set of transition probabilities. The primary challenge is to 

identify the most appropriate partitioning of regions. 

This chapter describes each of these generalisations in detail. Testing which of the two 

generalisations is more applicable for a set of sites is a problem of model selection. As 

such, it will be left for the next chapter where the results of the application of the 

models are compared. However, the ways in which the models differ should be kept in 

mind to allow interpretation of the results presented in the next chapter. 
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In addition to the introduction of the HMM generalisations, the important issue of 

correlation structure is discussed. A distinction is made between small- and large-scale 

correlation. Correlation is interpreted in terms of the modelling the dependence of 

rainfall between sites. Several parameterisations of the correlation matrix are put 

forward including zero correlations, empirical correlations, exponentially decaying 

functional correlations and fitted correlations.   

4.2 Switch HMM 

The Switch HMM (SHMM) is a generalisation of the multiple-site HMM and 

conceptualises annual rainfall as being controlled by a regional climate state with each 

site being allowed to ‘escape’ from this overall control. This formulation was born from 

the observation that not all sites are affected to the same degree by large scale climate 

controls such as El Niño with single sites sometimes showing totally opposite or 

anomalous responses when compared to surrounding sites.  

The SHMM structure is illustrated in Figure 4.1. The Switch HMM differs from the 

HMM due to the inclusion of the ‘switch’ probability parameters ( )m
t tp s W r D= =  and 

( )m
t tp s D r W= =  for each site. As before, tr  signifies the regional state at time t  with 

m
ts  corresponding to the state at site m . D  and W  represent dry and wet states 

respectively. The switch probabilities determine how closely the site state series follows 

the regional state series. 

4.2.1 Calculation of Switch HMM Likelihood 

Although the SHMM likelihood is similar to the ordinary HMM likelihood, derived in 

Section 3.4.1, a full derivation will be given here for clarity. As before, the overall 

likelihood is calculated using: 

 ( ) ( ) ( )1
1 1 1

2

| | | ,
T

T t
t

t

p p p −

=

= ∏Y � y � y Y �  (4.1). 

Note that the parameter vector used here is ( ), , , , , ,= W W D D� � � � � � P SP  with wet 

and dry mean and variance parameters for every site ( ), , ,W W D D� � � � , a correlation 

coefficient matrix , , 1,...,ij i j d� �= ρ =� ��  that is independent of state, a single set of 
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regional transition probabilities ( )1 , , ,ij t tp p r j r i i j W D−� �= = = = =� �P , and a set 

of switch probabilities ( ), , , , 1,...,site site
ij t tsp p s j r i i j W D site d� �= = = = = =

� �
SP . 

The evaluation of a typical term 1
1( | , )t

tp r −Y �  is now considered. The first step is to 

calculate the regional state probability according to:  

 
1

1 1
1 1 1 1( | , ) ( | , ) ( | , )

t

t t
t t t t

r

p r p r r p r
−

− −
− −=�Y � � Y �  (4.2). 

Given this regional probability, we can now calculate the probability of the individual 

sites being in a particular state m
ts  according to: 

 1 1
1 1( | , ) ( | , ) ( | , )

t

m t m t
t t t t

r

p p r p rs s− −=�Y � � Y �  (4.3), 

where ( | , ) 1
m
t

m
t t

s

p rs =� � . The probability of being in a particular state can vary from 

site to site. The larger the switch probability ( | , )m
t t tp r rs ≠ � , the less likely the site 

state series will correspond to the regional state series. The Switch HMM degenerates to 

the HMM when the switch probabilities are zero. 

The SHMM structure produces conditionally independent states at each site. This 

independence is used to calculate the site permutation probability:  

 ( ) ( )1 1
1 1

1

| , | ,
d

t site t
t t t

site

p p s− −

=

= ∈∏s Y � s Y �  (4.4), 

where ( )1 2, ,..., d
t t t ts s s=s  and d  is the total number of sites. The probability of the site 

state permutation ts , can be used to weight the Gaussian rainfall distribution as follows:  

 ( ) ( ) ( )
( ) ( )

1 1 1
1 1 1

1
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| , | , , | ,

| , | ,
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t t t t
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t t t
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�

�
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s

y Y � y s Y � s Y �

y s � s Y �
 (4.5). 
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Figure 4.1  Switch Hidden State Markov Model Conceptual Diagram 

In simple terms, the wet state rainfall distribution is most likely in years where there is a 

high wet state probability. A multivariate normal is used for the density function 
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The regional state probability is updated using: 
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 (4.6). 

This calculation is repeated until t T= . Once the forward phase has been completed, 

( )1
1| ,t

tp −y Y �  terms can be inserted into the overall likelihood equation (4.1). 

4.2.2 Interpretation of Switch Probabilities 

The switch probabilities provide an assessment of whether or not each fitted site 

behaves consistently with the regional state series. If all switch probabilities for a set of 

sites are identified to lie around zero, each site is following closely the regional state 

probability series. A regional climate control is dominating all sites. 

If, for example, only one of a set of sites identifies switch parameters significantly 

greater than zero, say 0.5, with the other sites having switch probabilities near zero, it is 

unlikely that the site is affected by the same regional controls, yet a regional state series 

has been identified. This could either be due to local effects (such as topography) or 

otherwise due to the added site being outside the region of influence of the regional 

climate effect. 

If the majority of sites identify switch probabilities away from zero, it is unlikely that 

the regional state series will be identified. This is hence an indicator that local site 

effects dominate the rainfall variability. 

The switch probabilities thus provide a quick check of whether an introduced site is 

affected by the same regional controls as other sites. This can provide a way of 

identifying regions where the hidden state Markov structure assumptions are justifiable 
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4.3 Regional HMM 

The Regional HMM differs from the Switch and ordinary HMM in that more than one 

regional climate control exists. Sites are partitioned into different regions with the 

number of regions being specified by the user, along with what sites are partitioned into 

each region. This formulation was designed to test the homogeneous climate region 

assumption explicitly by testing the single region hypothesis versus the many possible 

groupings of sites.  

The Regional HMM structure is illustrated in Figure 4.2. Rather than a single regional 

state tr  being used, there is now a vector of regional states ( )1 2, ,..., k
t t t tr r r=r , with k  

being the number of regions. The regional states are conditionally independent of one 

another given the previous regional state. That is, the regional state only depends on the 

previous state in the same region. Each site must be assigned to a region from { }1,...,k  

with all regions containing at least one site. 

4.3.1 Calculation of Regional HMM Likelihood 

As before, the overall likelihood is calculated using: 

 ( ) ( ) ( )1
1 1 1

2

| | | ,
T

T t
t

t

p p p −

=

= ∏Y � y � y Y �  (4.7). 

The parameter vector used for the RHMM is ( ), , , , ,= W W D D� � � � � � P , with wet and 

dry mean and variance parameters for every site ( ), , ,W W D D� � � � , a correlation 

coefficient matrix : , 1,...,ij i j d� �= ρ =� ��  that is independent of state, and a set of 

regional transition probabilities ( )1ij

reg reg reg
t tp p r j r i−

� �= = = =� �P , where 

, , 1,..,i j W D reg k= = . Notice here there are now k  regional sets of transition 

probabilities. 
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Figure 4.2  Regional HMM Conceptual Diagram 

The evaluation of a typical term 1
1( | , )t

tp r −Y �  is now considered. The Regional HMM 

likelihood revolves around updating of the regional state permutation probability:  

Given regional state permutation 

( )1 2, ,..., k
t t t tr r r=r  sample 

( )1, , d
t ty y=ty �  from multinormal 

distribution ( ),
t t

Nt r ry � ��  with 

mean and variances inserted 

according to tr  mapped to each site 

via ( )1 2, ,... dH reg reg reg=  .  

 

Regional State Series 
Parameters 

Regional Transition Probs 

1
1

reg reg
reg DW DW

reg reg
WD WD

p p

p p

� �−
= � �−� �

P    

Given previous state 
1t

regr
−

, 

generate regional state 
 

t

regr  for all regions 

Means and Variance of Rainfall 

site
D
site
W

� �µ
� �µ� �

     
site
D
site
W

� �σ
� �σ� �

 

Coefficient of correlation between sites  

2,1

1,1 1,2

,1 ,2 , 1

1
1

1

1
d d

d d d d

− −

−

� �
� �ρ� �
� �
� �ρ ρ� �
� �ρ ρ ρ� �

� � �

�

�

  

Map regional states to sites according 

site partitioning 

( )1 2, ,... dH reg reg reg=  where 

Site d 

Site 1 

Site 3 

Site 2 

1 9 0 0 1 9 2 0 1 9 4 0 1 9 6 0 1 9 8 0 2 0 0 0

1 9 0 0 1 9 2 0 1 9 4 0 1 9 6 0 1 9 8 0 2 0 0 0

1reg =  

2reg =  



80 

 Chapter 4 – Extensions to the HMM: The Switch and Regional HMM 

 ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

1

1

1

1

1 1 1
1 1 1 1 1

1
1 1 1

1
1 1 1

1

1
1 1 1 1

1

| , | , , | ,

| , | ,

| , | ,

| , | ,

t

t

t

t

t t t
t t t t

t
t t t

k
reg t

t t t t
reg

k
reg reg t

t t t t t
reg

p p p

p p

p r p

p r r p

−

−

−

−

− − −
− −

−
− −

−
− −

=

−
− − −

=

=

=

� �
= ∈� �

	 

� �

= ∈ ∈� �
	 


�

�

� ∏

� ∏

r

r

r

r

r Y � r r Y � r Y �

r r � r Y �

r r � r Y �

r r � r Y �

 (4.8). 

Note there are knstate  regional permutations, with ( )1 1| ,reg reg
t t t tp r r − −∈ ∈r r �  being the 

transition probabilities in each region. A user chosen indicator is required to partition 

the sites into regions ( )1 2, ,..., dH reg reg reg=  where { }1,...,reg k∈  and d  is the 

number of sites and thus mapping the regional state permutation set to each site. The 

probability of the regional state permutation ( )1 2, ,..., k
t t t tr r r=r , can be used to weight 

the Gaussian rainfall distributions as follows: 

 ( ) ( ) ( )
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 (4.9). 

A multivariate normal is used for the density function, ( , )
t tt t N µ Σr ry r �  where 

, 1,...,regsitet t

site

r
site d� �= µ =

� �r�  and , , 1,...,reg regi jt t t
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i j d� �= ρ σ σ =� �� �r� . Finally, the regional 

permutation probability is updated: 
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 (4.10). 

Once updated, this set of calculations are repeated until t T= . Once the forward phase 

has been completed, ( )1
1| ,t

tp −y Y �  terms can be inserted into the overall likelihood 

equation (4.7). 
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4.4 Spatial Dependence: small-scale correlation 

4.4.1 Introduction 

We now turn to the correlation coefficients of the Gaussian distribution. Taking a step 

back, we examine the reasons for incorporating these correlations – in short, for spatial 

dependency.  

The modelling of spatial dependency of data is well established with many ways having 

been proposed to incorporate spatial dependence between data collected at a number of 

geographical sites (termed a lattice). A comprehensive review of spatial statistical 

methods can be found in Cressie (1991). As stated in Cressie (1991 p.113), the 

following model can be useful is to model spatial data ( )Z s  where s  is a set of spatial 

locations on 2� :  

 ( ) ( ) ( ) ( ) ( ) 2,Z Wµ η= + + + ∈s s s s � s s �  (4.11). 

Here ( )µ ⋅  is the (sometimes deterministic) mean structure, called the large-scale 

variation. ( )W ⋅  is a zero mean process/distribution, called the smooth small-scale 

variation. ( )η ⋅  is a zero mean process/distribution, independent of W , called the 

microscale variation. ( )⋅�  is a zero-mean white-noise process, independent of W  and 

η , used to capture measurement error. This model is useful as it breaks down the 

overall variability of the data into components which have intuitive meaning. This 

additivity assumption for decomposition of the variability within the data is important in 

enabling this breakdown. Significantly, this decomposition is non-unique as different 

modellers can use different processes/distributions for each component. Thus, 

conclusions will vary dependent on the model applied. 

Using this framework we examine the variability structure of the models used in this 

thesis. Of course the models used in this thesis differ from that given in (4.11) in that 

there is temporal dependence. However, (4.11) is useful in analysing the spatial 

dependence structure of the model. The overall correlation observed (spatially) within 

the lattice data ( )1 1 = ,..,t
tY y y  is modelled here by two processes which respectively 

exhibit large- and small-scale variability.  
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4.4.2 Large- and small-scale variability 

A Markovian state occurring concurrently across sites induces some degree of 

correlation. If two sites share the same state series and have well separated wet and dry 

distributions, there will be significant correlation between the sites. The ellipses plotted 

in Figure 4.3a represents the bivariate Gaussian distribution for such a case, where the 

parameter vector of influence is ( )� ,� ,� ,� ,� ,� ,� ,� ,�j j j ji i i i
ijD W D W D W D W=�  for sites i  and j . 

Indeed as the wet and dry variances go to zero as shown in Figure 4.3b, the correlation 

will approach one. Conversely, if two sites do not necessarily share the same state, the 

sites will be less correlated, possibly visiting the four site state combinations 

{ }, , ,DD DW WD WW  as demonstrated in Figure 4.3c. This variation caused by the state 

series is coined the large-scale correlation. It is intended to model dependency between 

sites that is independent of distance - that is, correlation due to large-scale climate 

effects. A positive correlation will result if sites are grouped into the same climate 

region. 

Another means to describe the dependence of annual rainfall between sites is the 

Gaussian correlation coefficients. Reiterating, the covariance matrix is parameterised 

, , 1,...,i j
t t t

i j
ij s s

i j d� �= ρ σ σ =
� �s�  where i

ts  is the hidden state at site i  (for the switch 

model). The correlation coefficients are constrained such that the overall correlation 

coefficient matrix �  must be positive definite. This is labelled the small-scale 

correlation, intended at capturing dependency between sites due to topographical 

features and events occurring over sub-regional scales.  

Although the small-scale variability is intended to capture variability at sub-regional 

scales it is possible that spatial dependency over large scales may be identified by the 

small-scale structure. Likewise, the large-scale variability included by the Markovian 

regions of the HMM and its variants can act as small-scale correlation structure. How 

much of the spatial dependency should be attributed to the small and large scale 

structures is not known a priori. It is possible, indeed likely, that the calibration tries to 

accommodate the proposed model by fitting the best combination of small and large-

scale correlation in terms of likelihood, whether or not this combination of small and 

large-correlation is what the modeller intended. This issue is linked to the nonunique 
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nature of the decomposition (4.11), and is explored further upon application of the 

models in Section 5.5. 

(a)    

 

(b) 

 

(c) 

 

Figure 4.3 Gaussian ellipses for (a) sites in the same region, (b) lower identified state variance and 

(c) sites not in the same region. 
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Gaussian ( )W ⋅  distribution could be considered to include these effects. Typically, a 

Gaussian distribution with constant variance across all sites (and zero covariance) is 

used to model ( ) ( ) ( )20,Nη τ⋅ + ⋅� I� , where I  is the identity matrix and 2τ  is a 

variance parameter to be inferred. The microscale variation term, often called the nugget 

effect (Matheron, 1962, Cressie, 1991 p.59), is included to reproduce unexplained 

variability occurring over scales smaller than the distance between sites. For example, 

consider two closely spaced sites. It is possible in a climate which produces significant 

rainfall from small-scale systems that rainfall at the two sites may be affected by 

different events. Put another way, a significant meso- or micro-scale storm cell may 

pass over one site but miss the other thereby weakening the correlation one would 

expect between closely spaced sites. 

It is noted that the necessity for such a nugget term modelling unexplained variation 

may be reduced by the inclusion of key covariates in the model – for example other 

atmospheric indices (temperature, air pressure, number of cyclone crossings etc). 

4.4.3 Parameterisation of the correlation matrix 

Many parameterisations of the correlation coefficient matrix are possible. One 

alternative is to use zero correlation, thus leaving the Markovian states to account for 

inter-site dependency. For the full RHMM, with every site in its own region, this zero 

correlation model is essentially the single site HMM of Thyer (2001). Another simple 

method would be to use correlation coefficients estimated empirically (from the data) – 

an empirical Bayes approach (Morris, 1983). This was the first method used when 

formulating the models applied in this thesis. However, this method is not in keeping 

with the Bayesian ideal of allowing uncertainty within parameters – that is, there is 

inadequate accommodation of uncertainty. Also, forcing these low level parameters to 

assume the value of the overall estimated correlation runs the risk of forcing an 

inappropriate structure. That is, the overall correlation observed in the data may not be 

produced by this small-scale correlation alone. 

Another approach is to consider the correlation matrix as completely unknown, and fit 

every individual correlation. Indeed this is the main approach taken in the remainder of 

this thesis. This method was chosen as it allows a better understanding of the 
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relationship between these correlations and variability induced by the Markovian state 

series. 

Correlation functional relationships based on distances are typically used in daily 

rainfall studies to capture short-range dependence between sites (eg. Sanso and Guenni, 

2000). As annual rainfall accumulations are used in this study, this short-range 

dependence along with large-scale climate dependence is likely to be the cause of the 

observed correlation. These techniques are useful as they dramatically reduce the 

number of parameters requiring inference. One such functional (from the Matérn class - 

Handcock and Wallis, 1994) correlation structure is the exponentially decaying 

correlation structure:  

 
� exp , 0ij

ij
dist λ
λ

−� �= >� �
	 


 (4.12), 

where ijdist  is the distance between sites , 1,...,i j d= , and λ  is a range parameter to be 

inferred. 

Although not used in the main case studies described in Chapter 5, a functional 

relationship such as the exponential correlation decay is required for application of the 

RHMM model to a larger number of sites simply to avoid an unmanageable number of 

parameters. Some initial testing of the exponential correlation structure is undertaken, 

and comparisons are made to results using individually fitted correlations. 

The microscale variation (nugget effect term) was not applied in the case studies of 

Chapter 5. Considering the additive nature of (4.11), the flexibility of fitting individual 

correlations (and site variances) and the small number of sites used, this was not 

considered a limitation. The intuition behind this consideration is due to the additive 

nature of Gaussian distributions, the nugget variance is not formally identifiable. That 

is, every possible covariance structure available when using the nugget term is also 

possible for the cases where individual fitted correlations and no nugget term are used. 

However, every possible overall covariance for the exponential decay combined with 

the nugget effect is not possible using the exponential decay alone. Therefore, upon 

application to a larger number of sites, with a less flexible correlation structure (such as 

the exponential decay) it is expected that use of a nugget effect term would be justified. 
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Again, some initial tests applying the nugget effect term are presented in conjunction 

with the exponential correlation decay testing. 

The parameterisations of the correlation coefficient (and hence covariance) matrix differ 

from the work of Thyer (2001), where all elements of the covariance matrices (wet and 

dry) were considered unknown. This essentially means that correlation parameters were 

fitted for both the wet and dry states. Here however, the correlation matrix is modelled 

independently of state. Table 4.1 compares the different number of parameters for each 

of the HMM, Switch HMM and Regional HMM correlation parameterisations. Note the 

quadratic rise in correlation/covariance parameters with the number of sites d . 

Table 4.1   Number of parameters for the Ordinary, Switch and Regional HMM 

Model Correlation 
parameterisation 

Trans 
Prob 

Switch 
Prob 

Mean & 
Variance 

Covariance 
or 

Correlation 
Total Parameters 

Thyer’s 
HMM Fitted Covariance 2  4 d  ( 1)d d −  ( )22 6 4 2d d+ +  

Zero/Empirical 2  4 d   ( )8 4 2d +  

Exponential decay 2  4 d  1 ( )8 6 2d +  HMM 

Fitted Correlation 2  4 d  ( 1) 2d d −  ( )2 7 4 2d d+ +  

Zero/Empirical 2 2 d  4 d   ( )12 4 2d +  

Exponential decay 2 2 d  4 d  1 ( )12 6 2d +  
Full 

Switch 
HMM 

Fitted Correlation 2 2 d  4 d  ( 1) 2d d −  ( )2 11 4 2d d+ +  

Zero/Empirical 2 d   4 d   ( )12 2d  

Exponential decay 2 d   4 d  1 ( )12 2 2d +  
Full 

Regional 
HMM 

Fitted Correlation 2 d   4 d  ( 1) 2d d −  ( )2 11 2d d+  

4.5 Parameter Priors 

Within the Bayesian framework, it is necessary to specify the prior distribution of 

parameters ( )p � . An empirical Bayes approach is adopted in this study. Empirical 

Bayes describes a modelling outlook where the data, as far as possible, is used for 

inference on parameters (Berger, 2000, Carlin and Louis, 2000). In line with the 
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empirical Bayes approach, priors were chosen with the intention of being weakly 

informative (see discussion in sections 3.2.1 and 3.7.1). Also priors on parameters 

shared in all models were not altered from one model to the next so as to not favour one 

model over another a priori. 

Table 4.2 presents a summary of the priors, listing firstly the parameter of interest, then 

the model(s) that the parameter applies to. The prior distributions used for the 

parameters along with parameter bounds are given. In sections 4.5.1 and 4.5.2 some 

practical considerations involving application of these priors and models are discussed, 

while the following sections justify the choice of priors for each of the models. 

Table 4.2   Parameter prior distributions and bounds 

Parameter Model(s) Prior 
distribution 

Lower 
bound 

Upper 
bound 

Hyper-
parameters 

site
Dµ , site

Wµ  ALL ( )2
0 , yN µ σ κ  0 10,000 0 siteyµ = , 1κ =  

site
Dσ , site

Wσ  ALL ( )2 2
0 0,Inv − χ ν σ  0 ∞ 

22
0 sitesσ = , 

0 2ν =  

reg
DWp , reg

WDp  ALL Uniform  0  1 not applicable 

( )
( )

site
t tsite
t t

p s W r D
p s D r W

= =
= = SHMM ( ),Beta α β  0  1 1α = , 2β =  

ijρ  ALL Uniform  0  0.95   

4.5.1 Parameter non-identifiability and label switching 

Before the individual parameter priors are discussed, the issue of parameter non-

identifiability warrants discussion. An inherent feature of mixture modelling (we are 

using a mixture of wet and dry Gaussian distributions) is a property known as non-

identifiability (Celeux et al., 2000, Stephens, 2000, Fruhwirth-Schnatter, 2001). 

Parameter non-identifiability describes the invariance of the likelihood (and the 

posterior for flat and symmetric priors) to permutations of the labeling of parameters.  

For the two-state HMM, every parameter set �  has a corresponding parameter set *
�  

that fits the data equally well. For example, for the single site HMM there are six 

parameters, the two transition probabilities DWp  and WDp  and the state specific 
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parameters, the wet and dry means and standard deviations ( ), , ,W W D Dµ σ µ σ . Let us 

say we have a set of these parameters which we think are the true parameters. If the 

labelling on these parameters is switched, that is, if for all the parameters we switch the 

labelling of W and D, an identical fit to the data is found. The model itself cannot 

differentiate between the two different labellings. This means that for any state specific 

parameter (either the mean or the variance), there will be a symmetry in the posterior 

distributions (with the posterior distributions for each state being identical) as shown in 

schematic form in Figure 4.4. Theoretically, the number of samples taken in each 

labeling subspace using unconstrained MCMC sampling should be equal. In practice the 

sampler is only run for a finite amount of iterations, and may not jump between the 

mirrored distributions in a balanced way. This may occur when the distributions are 

well separated such as in Figure 4.4a, with the sampler possibly not jumping between 

these subspaces at all, occupying only one subspace. A parameter constraint is usually 

applied in such cases forcing the model to occupy only one subspace within the 

sampling distribution (eg. as discussed in Stephens, 1997 p.43). If the results are going 

to be interpreted in a physical sense we also would want posterior distributions to differ 

for the wet and dry means. Given that an intended use of this model is to condition a 

smaller timescale model using the posterior state series, it is a necessary requirement 

that such a unique labelling is used. 

(a) 
(b) 

Figure 4.4 Posterior parameter schematic for parameter showing label switching (a) a well 

separated posterior and (b) overlapping posterior. 
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In the case of the two state HMM, imposing the parameter constraint on every site mean 

rainfall >W D� �  during MCMC sampling is usually able to address this problem 

(Richardson and Green, 1997, Thyer, 2001). However, with the extra layer of switch 

parameters in the Switch HMM comes a new opportunity for label switching. Another 

simple parameter constraint is used to overcome this problem. The transition 

probabilities are bounded by the constraint DW WDp p<  which in terms of the model 

prior is an expectation that the dry year residence times are expected to be longer than 

the wet year residence times.  

Theoretically, the marginal likelihood produced from a mixture model under a labeling 

constraint (with the prior normalized for the unoccupied space), and the marginal 

likelihood of an unconstrained model should be equal. However, in some mixture 

models, it is possible for label switching to cause a downwards bias in calculation of the 

marginal likelihood according to the Gelfand-Dey reciprocal importance estimator 

(Fruhwirth-Schnatter, 2002) even where parameter constraints have been employed. 

This bias occurs when the posterior distribution approaches a labeling constraint. If the 

unconstrained posterior is overlapping like that shown in Figure 4.4b, and a sampler is 

applied with constraint W Dθ θ> , label switching can still occur due to the reflection of the 

distribution below the constraint (the magenta ellipse). For the HMM, SHMM and 

RHMM the >W D� �  constraint was applied. Label switching as described above would 

require the mean distributions to be poorly separated W Dµ ≈ µ . For the HMM and 

SHMM it is not expected that this label switching will affect results as the label 

switching requires all sites under the influence of a regional climate state to show poor 

separation. Previous testing using the HMM has shown that significant mean separation 

occurs for at least one of the sites used in each analysis within Chapter 5. For the 

RHMM, a greater possibility of label switching arises as there are transition 

probabilities associated with individual sites. Therefore, as there are more groupings of 

sites under regional state controls, it is more likely that one of these regions identifies 

poor mean separation for all sites within. However, it was considered that a downward 

bias in the marginal likelihood for poorly separated regions was not of significance in 

this study as such a bias favours grouping of sites such that greater state separation 

occurs. 
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It is reiterated that the scale of the label switching problem depends on the aim of the 

analysis: it is indeed a problem if the aim is model identification, but is less important if 

the aim is prediction from a given model. Predictions/simulations from each model 

should have the same statistical characteristics whether or not label switching has been 

addressed. It is again a problem if model averaged predictions are used (if estimates of 

model probability are biased), as resulting simulations will be biased. 

Alternate methods to address the label switching problem without the imposition of 

parameter constraints during sampling (Celeux et al., 2000, Stephens, 2000, Fruhwirth-

Schnatter, 2001) were investigated. Essentially these methods force balanced switching 

to occur such that an equal number of samples are taken from all labeling subspaces. 

However, the simplicity with which the parameter constraints can be applied was 

favoured over these more complicated sampling schemes. The possibility of a biased 

marginal likelihood is a weakness of the current sampling implementation, and results 

must be interpreted with it being understood that models with poorly separated means 

may have been discriminated against. Future work will need to formally address this 

label switching problem with the application of one of the aforementioned methods.  

4.5.2 Parameter constraints: normalizing prior distributions 

The parameter constraints related to label switching are actually employed within the 

parameter priors. The unconstrained prior ( )|p ∈� � 	  defined over support 	  

requires normalisation, as many parameter combinations are no longer feasible. The 

following identity is used to define the normalised prior over the constrained support 

′ ⊂	 	 :  
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  (4.13), 

where [ ]I ⋅  is an indicator function with value 1 if the statement is true, or 0 if the 

statement is false. A MCMC proposed parameter set which does not satisfy the 

constraints is given a prior value of zero, hence making it impossible for the sampler to 

visit the sampled value. 
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It is noted here that if the normalising constant relates to parameters which are common 

to the models in the selection set and have the same priors, it is not necessary to 

normalise the associated prior distribution. Such normalising constants cancel when 

calculation of model weights is performed using (3.18). In this study, all of the 

normalising constants were calculated (analytically or by numerical integration). These 

calculations were performed so as to allow simple comparison in the future between 

these models and other models which have not been tested here and which do not share 

the same normalising constants. Normalising constants related to label switching 

(required as a prior on the mean) and the positive definite requirement for the 

coefficient of correlation matrix are presented in the following section discussing choice 

of priors. 

4.5.3 Shared Parameters: Ordinary, Switch and Regional HMM 

As many parameters are used in the HMM and the generalisations tested in this thesis, 

the same priors were placed on these shared parameters so as to not favour one model 

over another a priori. 

Means ,
site
D Wµ  and variances 2

,
site
D Wσ  

The same priors as those used in the single site test case in Section 3.10 were used for 

all models for the means ,
site
D Wµ  and variances 

2

,
site
D Wσ . The means and variances at each 

site are independent of one another, with identical priors on the wet and dry 

distributions. The mean and variance are modelled jointly according to the following 

relationship:  
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(4.14). 
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The outer product over the sites follows the prior independence among sites assumption, 

while the inner product is a consequence of the independence between states. The 

probability ( )site site
D WP µ < µ  normalises the joint distribution according the parameter 

constraint, and is equivalent to the ( )P ′∈� 	  term in (4.13). Because the prior on site
Dµ  

and site
Wµ  are assumed equal, the prior is (marginally) symmetric about the line 

site site
D Wµ = µ . Accordingly ( ) 1

2
site site
D WP µ < µ = .  

Given that the priors on the mean and variance are specified by:  

 ( )
( )

2 2
0

2 2 2
0 0

| ,

,

site site
yi i

site
i

N

Inv

µ σ µ σ κ
σ − χ ν σ�

�  (4.15), 

the joint  probability of the state means and variance is defined as: 
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(4.16), 

where Nf  and 2Inv
f −χ  are the density functions for the Normal and Inverse- 2χ   

distributions respectively. The indicator function imposes the upper ( ubnd ) and lower 

( lbnd ) bound restrictions on the mean. Calculation of the Bayes factor and MCC 

sampling both require exact calculation of the prior (rather than to a constant of 

proportionality). As the marginal joint distribution has been truncated, the denominator 

term is inserted here to normalise this distribution to sum to one. The analytic 

calculation of the denominator is provided in Appendix A.  

The application of priors on the variance parameters independently of correlation 

parameters differs from the work of Thyer (2001), where a prior was applied to all 

elements of the covariance matrices (wet and dry) jointly. In that study, an Inverse-

Wishart distribution was used for the prior on the covariance matrices. An Inverse-
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Wishart distribution is the multivariate generalisation of the Inverse- 2χ  distribution.  In 

this study, an Inverse- 2χ   distribution was used for the diagonals of the covariance 

matrices (the variances), and hence has the same prior on the variance parameters as 

Thyer (2001). 

Following Thyer (2001) the site means sitey  and variance 2
sites  (see Section 3.6.1) were 

used to define the prior mean and variance. The prior degrees of freedom (κ and ν0) 

were kept to a minimum to ensure that the priors remained diffuse. All means were 

truncated below zero, with an upper bound of 10,000.  

Correlations 
ijρ  and other small-scale variation parameters 

The priors on parameters related to small-scale and microscale variability are 

summarised in Table 4.3. 

Table 4.3 Small-scale variability parameter prior distributions and bounds 

Parameter Small Scale 
Variability Model(s) 

Prior 
distribution 

Lower 
bound 

Upper 
bound 

Hyper-
parameters 

Zero Correlation     0ijρ =  

Empirical Correlation    ij ijρ = ρ  ijρ  

Fitted Correlation Uniform  0  0.95   

λ  
Exponential 
Correlation ( ),Gamma λ λα β  0 ∞ 5λα = , 100λβ =  

τ  
Nugget Effect 
(Microscale) 

Uniform  0  200   

Within the majority of the case studies undertaken in this thesis, individual (site-to-site) 

correlations were inferred i.e. the fitted correlation model in Table 4.3. 

Correspondingly, a prior is required on all correlation parameters 
ijρ . Uniform priors 

were placed on these correlations with bounds [ ]0,0.95 . The 0.95  upper bound was 

applied as no pair of sites has previously produced empirical correlations as high as 

0.95. Within the case studies this correlation structure is referred to as Fitted 

Correlations. It is noted that not every combination of correlations produce a positive-

definite covariance matrix. Consequently, for comparison of this model using marginal 
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likelihood against others which are positive definite for all parameter values (such as the 

exponential decay), normalisation of the joint prior on all correlation coefficients is 

required as per Section 4.5.2. For the four site case studies in the following chapter, this 

normalising constant was calculated using numerical integration. This involved 

sampling correlations from the prior, and testing whether or not the correlation matrix 

was positive definite. The ratio of accepted correlation matrices were then used to 

normalise the marginal likelihood according to (4.13).  

Zero Correlations and Empirical Correlations (estimated from data) are applied in some 

case studies. In terms of prior, this is essentially equivalent to putting the entire prior 

distribution at the appropriate parameter value. 

The alternate formulation of the correlation matrix, the Exponential Correlation decay 

structure, was also trialled for some initial testing and comparison to the Fitted 

Correlation model. Thus a prior is required on the λ  range parameter. As in the study of 

Sanso and Guenni (2000), the prior on λ  was a Gamma distribution:  

 ( ),Gamma λ λλ α β�  (4.17). 

The hyperparameters chosen, 5λα =  and 100λβ = , were based on the plot of 

empirically estimated correlations from the 13 sites used in the case studies, and is 

shown in Figure 4.5. 

As Figure 4.5 demonstrates, the prior on λ  was chosen so as to accommodate the 

empirical correlations for the majority of sites, and also be reasonably vague. Sites 

within 400km were considered more important than those outside this radius, as the 

exponential correlation decay represents an attempt to model small-scale variability.  

In addition to the small scale variance modelling, some initial tests were undertaken 

with a nugget effect (microscale) variation term added as describe in Section 4.4.2. This 

Gaussian distribution requires a variance parameter 2τ  to be inferred. Thus a prior is 

required on τ . A uniform prior was used on τ  with bounds [ ]0,200 . The upper bound 

was chosen as it is greater than the empirically estimated standard deviations for the 

majority of sites tested. 
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Figure 4.5 Empirically estimated correlation coefficients using 13 sites spanning 1900-1986 versus 
 

prior distribution (converted to correlation) 

Transition Probabilities DWp  and WDp  

Uniform priors over the range [ ]0,1  were used on all transition parameters throughout 

this study. 

4.5.4 Switch HMM 

Transition Probabilities Constraint Normalisation 

As mentioned in Section 4.5.1, an additional constraint was imposed on the transition 

probabilities within the Switch HMM to uniquely identify the parameters. As was done 

for the parameter means, normalization of the priors must be performed. The probability 

that the switch constraint is satisfied is:  

 ( ) 1
2DW WDP p p< =   (4.18). 
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The need for guiding priors 

If the switch HMM is to be useful in practice, it needs to be able to identify the regional 

two state Markov structure given around 100 years of data. The simplest two state 

Markov structure within the scope of the SHMM is the HMM itself. With the HMM, 

there are no switch probabilities to confuse the identification of the regional persistence 

structure. To ensure that the SHMM was able to correctly identify this simplest case, 

100 years of HMM data were generated, and the SHMM was calibrated to this data. As 

the state series is known for generated data, the posterior state series can be compared to 

the true state series. Differences between these two series can indicate a lack of 

identifiability arising from the level of complexity of the SHMM. In accordance with 

the empirical Bayes approach, a flat prior distribution was used for the newly added 

switch parameters.  

The 100 years of generated data was based on the parameters shown in Table 4.4. These 

parameters reflect the greatest separation of states observed through previous 

calibrations of the HMM. Therefore, these parameters represent the most easily 

identifiable HMM structure. Figure 4.6 shows for a single site and two site simulation 

the result of calibration of the switch HMM. The true state series is indicated by the 

dotted line. 

Table 4.4   Generated Data Parameters 

Parameter Value 

DWp   0.05 

WDp  0.25 

site
Dµ   1000 

site
Wµ  1400 

,
site
D Wσ  100 

All sites 

ijρ  0.8 

For both the single site and two state calibrations, the posterior regional state probability 

series does not correspond to the generated state series particularly well. The single site 

probability series lingers around a value of 0.5, not identifying the persistence structure. 

The two site identification is slightly better (as there is more regional state information 
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contained in two sites). However, given that this is the easiest Markov structure to 

identify (no switching) and also that this is the best state separation we are likely to 

encounter, this level of identification is considered inadequate. Priors on parameter 

distributions will be needed to combat the amount of uncertainty introduced by the 

switch parameters.  
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Figure 4.6  Generated vs. posterior state series (a) single site and (b) two site for a flat prior  

A Beta distribution ( ( ) ( )| 1,2t t tp s r r Beta≠ � ) was used for the prior distribution of 

switch probabilities and is shown in Figure 4.7. This prior favors switch probabilities 

near zero, and represents a belief that the sites are likely to be controlled by the regional 

climate state. The contribution to identification of this prior is evident in Figure 4.8 

when compared to Figure 4.6. Although not perfect for the single site, the state 

probability series for the two site case is near perfect. As this model is not intended to 

be used for single sites, the prior was considered adequate for identification. There is a 

danger when using priors that too strongly favor a particular parameter set. However, as 

this was the best possible opportunity for identification (the data was generated by a 

HMM), and the model still was not clearly identified for the single site, the prior was 

considered to be a good balance between the empirical Bayes perspective and the need 

for identification.   
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Figure 4.7  Switch parameter ( )1, 2Beta  prior density 
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Figure 4.8  Generated vs. posterior state series (a) single site and (b) two site for a beta prior 

4.5.5 Regional HMM 

Transition Probabilities 

As in the ordinary HMM and the Switch HMM, uniform priors over the range [ ]0,1  are 

used on each of the individual transition probabilities 

( )1ij

reg reg reg
t tp p r j r i−

� �= = = =� �P , where kregjiDWji ,...,1,,,, =≠=  within the 

Regional HMM.  

4.6 Model Priors 

Within the Switch HMM and the Regional HMM frameworks there are many possible 

models. 
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4.6.1 Switch HMM variants 

The full Switch HMM with switch probabilities at every site is one possibility, with the 

HMM at the other extreme (no sites with switch probabilities). In between there are 

many other combinations possible, with some sites having switch parameters, and 

others having none. Overall, there are 2nsite  possible Switch HMM variants. 

4.6.2 Regional HMM variants 

The Regional HMM possibilities are more complex. The problem is to list the total 

number of ways d  rainfall gauge sites can be partitioned into k  climate regions, where 

k d≤ . In mathematical parlance, we wish to generate partitions of a d -set into k  non-

empty blocks.  Table 4.5 lists the possible ways to partition four objects, with each 

number corresponding to the region that that site is grouped. For example, the block 

1,1,1,1 groups all sites into region 1, whereas 1,2,3,4 partitions each site into its own 

region. This discussion of set partitions, and the algorithms used in generating the set 

partitions follows Stanton and White (1986 p.18). 

Table 4.5   Possible Partitions of a four site set 

1,1,1,11,2,1,11,2,2,3

1,1,1,21,2,1,21,2,3,1

1,1,2,11,2,1,31,2,3,2

1,1,2,21,2,2,11,2,3,3

1,1,2,31,2,2,21,2,3,4

The number of set partitions of [ ]d  with k  blocks is called the Stirling number of the 

second kind ( ),S d k , and is calculated according to the recursive sum:  

 ( ) ( ) ( ) ( ), 1, 1 1, , 1, 1S d k S d k k S d k where S k= − − + ⋅ − =  (4.19). 

The total number of set partitions of [ ]d  is called the Bell number, and is simply the 

sum of the Stirling numbers over k . As the Regional HMM is intended to be used on 

groups containing at least four sites, Table 4.6 lists the Stirling and Bell Numbers 

against a few demonstrative number of sites. 
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Table 4.6   Possible blocks of d sites into k blocks 

Number of blocks k (Stirling number) Number of 
Sites d 

1 2 3 4 5 6 7 8 

Total 
number of 
partitions 

1 1        1 

2 1 1       2 

4 1 7 6 1     15 

8 1 127 966 1701 1050 266 28 1 4140 

Clearly, the total number of possible models (partitions) grows faster for the Regional 

HMM than the Switch HMM ( 82 256= ). Should all of these models be investigated, 

calibrated and compared? From a computation viewpoint, the fewer models the better. 

As we have chosen here to optimise every model, and sample from every model using 

MCMC, too many models could mean prohibitive computation time. That is, for a given 

number of sites, computation time rises at least linearly with the number of models. 

Hence, when the number of sites increases, it may not be possible to model all 

combinations. More importantly, is allowing each and every possible partitioning 

feasible in a physical sense? A methodology of subjectively choosing plausible sets of 

partitions to work with is needed. 

A method of culling models is required with culled models effectively being allocated a 

prior model weight ( ) 0p M = . Such models are designated a priori impossible. A 

culling method based on topographical location was introduced. A map is drawn with 

edges joining certain (neighbouring) designated pairs of sites that can be partitioned into 

a block. If for a particular partitioning, there is no edge connecting a site with any other 

sites within the same block, that partitioning is given zero weight. This mapping 

produces climate regions that are more physically realistic than partitionings with sites 

well separated from one another being in the same region and in-between sites in a 

different region. To demonstrate this mapping a simple four site example is shown in 

Figure 4.9, with ellipses representing the vertices (sites) and lines representing edges 

(neighbours). 
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Figure 4.9  Four Site Partition Map 

Figure 4.9 shows all four sites being neighbours of one another with the single 

exception of Site 2 and Site 3. This omission of an edge, means that any partitioning 

which groups Sites 2 and 3, whilst not being partitioned with Sites 1 or 4 has a zero 

model prior. In terms of the 15 models/partitions given in Table 4.5, two models are 

given zero prior weight, models 1,2,2,1 and 1,2,2,3. Although in this simple 4 site case, 

this culling only reduces the number of sites by 2, for cases above 4 sites, this process 

exponentially culls partitions. Of course, it may be desired that all partitions be 

modelled, and this can be achieved by maintaining all sites as neighbours. Neighbouring 

sites are designated by the user, and hence are arbitrary. However, it is believed that 

basing site groupings on site locations that are nearby is a reasonable method of 

designating models that are physically plausible. 

4.6.3 Uniform model prior 

Uniform model priors were used for all models tested in the next chapter. That is, the 

HMM, the individual Switch HMM and Regional HMM variants that were not culled 

were all assigned equal weighting a priori.  

4.7 Conclusion 

This chapter introduced the two generalisations of the HMM, the Switch HMM and the 

Regional HMM. Both of these frameworks were designed to relax the assumption of a 

single regional climate state exerting control over all sites. The Switch HMM allows 

individual sites to exhibit anomalous behaviour with regard to the regional state. The 

Regional HMM, on the other hand, partitions the sites into various climate regions, each 

with their own climate state series. 

Site 3 

Site 1 

Site 2 

Site 4 
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Calculation of the likelihood along with associated parameter priors for both the models 

was detailed. Many models are possible within these new frameworks. A uniform 

model prior was used over all possible HMM, Switch HMM and Regional HMM 

variants. A culling technique based on neighbouring sites was used to reduce the 

number of Regional HMM variants to avoid searching through an unmanageably large 

model space. 

The spatial dependency structure of the models was examined. It was noted that the 

regional climate state induces a large-scale correlation independent of distance within a 

region, whereas the multi-normal distribution accounts for small-scale correlation. In 

particular, several parameterisations of the small-scale Gaussian correlation were 

proposed for testing in the following chapter. The most flexible correlation structure, 

treating the correlation coefficients as completely unknown, and fitting individual site-

to-site correlations was chosen for use in the majority of the case studies. It is believed 

this will provide insight into using other (less parameterised) functional correlation 

relationships such as the exponential decay. 

This chapter has laid the foundation for the next chapter in which Bayesian model 

selection will be used to guide the identification of regional climate controls for two 

Australian case study regions, one in NSW and the other in Queensland. 
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Chapter 5 Switch and Regional HMM Case Studies 

5.1 Introduction 
In this chapter the HMM, Switch HMM (SHMM) and Regional HMM (RHMM) are 

applied to several groups of sites located in Eastern Australia. The purpose of this 

exercise is to determine which of the model structures is in some sense the ‘better’ 

model. The main tool used to assess each model is Bayesian model selection (BMS). 

The data used is introduced, with two sets of four sites (Close and Far), located around 

Sydney and Brisbane being the foci of the case studies. Sydney and Brisbane were 

chosen as the centres of these regions due to the previous identification of inter-annual 

persistence in these areas. 

Each of the full models are applied to the data sets. These initial tests on the HMM, the 

full SHMM (all sites with switch probabilities) and the full RHMM (all sites in their 

own climate region) are used to gain an appreciation of the parameter identification 

issues associated with each model. This provides an interpretive framework when all of 

the model variants are tested. 

BMS is applied to all model variants of Switch and Regional HMM, from which model 

averaged state series are produced. These state series are used in calibration of the short 

timescale rainfall model DRIP in the following chapter.  

Finally, modelling the small-scale correlation structure is considered in more detail with 

comparison of the Zero, Empirical, Exponential Decay and Fitted correlation coefficient 

structures undertaken. In particular, the Exponential Decay structure is examined as a 

possible successor to the Fitted Correlation approach. A nugget effect term is also 

introduced to account for microscale variation observed within the data.    

5.2 Data 
There were several factors influencing the choice of sites for this study. The main 

factors were: 

� Areas have previously exhibited evidence of inter-annual persistence. 

� Areas have a sufficient amount of high quality annual rainfall data sets. 
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� Sites have previously been calibrated using the HMM by Thyer (2001) or 
Srikanthan et al. (2001) thus allowing comparison of results. 

� Each site has an annual rainfall length which spans at least the length of the  6-
min pluviograph records used to calibrate the DRIP model. 

5.2.1 Key Sites: Sydney and Brisbane 

In the studies of Thyer (2001) and Srikanthan et al. (2001), Sydney and Brisbane have 

shown evidence of long-term persistence, supporting the two-state hypothesis of the 

HMM model. Given that there exist long-term 6-min pluviograph records at these sites 

and that the long-term variability of these records is of interest (being large metropolitan 

areas), Sydney and Brisbane were chosen as the key sites in this study. The term ‘key 

site’ is used here to denote that they are the sites of most interest, with other sites 

surrounding the key sites being included essentially to identify the state series at that 

point more clearly. This definition of key sites would be irrelevant if the purpose of the 

study were solely to determine which sites should be grouped into the same climate 

region.  

The models presented in this thesis have not yet been generalised to accommodate data 

commencing and finishing in different years. Hence the time-span of data used will be 

from the beginning of the latest starting time series, and the end of the earliest finishing. 

It is desired that the inferred state series at least span the pluviograph data to be used 

within the DRIP calibration. The length of 6-min pluviograph data for each key site is 

given in Table 5.1. 

Table 5.1 6-min Pluviograph data used in this study 

Site No. Name Start Finish 

66062 Sydney RO Jan 1913 Nov 1991 

40214 Brisbane RO Jan 1908 Dec 1991 

5.2.2 Surrounding Sites: Close and Far 

Sites surrounding the two key sites must now be chosen. It is not clear on what basis 

sites should be chosen in a HMM analysis. Indeed, this is a major motivating factor of 

this work. Choice of sites too far from one another could mean they do not belong to the 

same climate region, whereas, sites close to one another having high rainfall 

correlations may make it harder for extra information to be gained on the climate state. 
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Although, the two generalisations to the HMM are designed to give some flexibility in 

the choice of sites, a balance between these two extremes is desired. 

Two groups of sites per key site were tested in this thesis: a group of sites within 200km 

of the key site (Close) and a group at greater than 200km (Far). This testing will thus 

permit assessment of the effect of distance on inference. The position of these sites is 

shown in Figure 5.1. Four sites in each grouping were used (as opposed to many sites) 

as it is believed that small test cases are required first to gain some understanding of the 

models introduced. Another factor is that the computation time for optimisation and 

sampling rises exponentially with the number of sites; the previous chapter detailed the 

possible rise in number of models and parameters with the number of sites. Note that 

RHMM neighbouring sites are indicated in Figure 5.1b, and were determined following 

the culling protocol defined in Section 4.6.2. 

The annual rainfall data used in Thyer (2001) and Srikanthan et al. (2001) formed the 

majority of sites chosen in this study. Table 5.2 lists the sites chosen, along with their 

length and site grouping. Two columns indicate whether or not the data was used in the 

Srikanthan et al. (2001) or Thyer (2001) studies, while the final column indicates 

whether that site was listed as part of the high quality rainfall data set identified by 

Lavery et al. (1997). All data sets were used in these previous studies or identified in the 

Lavery et al. (1997) set with the exception of Caboolture (40038). Caboolture was 

included in the Brisbane Close set as there were insufficient sites used in Thyer (2001) 

or Srikanthan et al. (2001) that were sufficiently close to the Brisbane key site. The 

Caboolture record was derived from aggregated daily records spanning 1892-1997, with 

data quality control flags indicating there were no missing daily rainfalls in this period, 

with the exception of accumulated readings taken over periods of four days or less. 

These accumulated readings were particularly prevalent over weekends. As the data 

used here is an annual total from the daily data, this weekend accumulation is not 

expected to have any effect on inference. The resulting contiguous data length of each 

site grouping is reported in Table 5.3. 

Of the surrounding sites chosen, Cape Capricorn LH (39023) is the only site with a 

shorter span than the associated key site pluviograph. This in turn means that not all of 

the available pluviograph data will be used in the DRIP Brisbane Far site calibration 
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next chapter. As it is only five years shorter, this was not considered as having sufficient 

impact on the DRIP calibration to warrant a more extended search for sites. 

Table 5.2  Annual rainfall data used in this study 

Site 
No. Name Start Finish Site 

Group* 
Srikanthan 

Set 
Thyer 

Set 
Lavery 

Set 

39023 Cape Capricorn 1900 1986 BF Yes No No 

40038 Caboolture 1892 1997 BC No No No 

40043 Cape Moreton 1870 1998 BC Yes No Yes 

40214 Brisbane 1860 1992 BC,BF Yes Yes No 

41082 Pittsworth 1887 1998 BC Yes No Yes 

42023 Miles 1885 1998 BF Yes No Yes 

54004 Bingara 1886 1998 SF,BF Yes No Yes 

62021 Mudgee 1877 1998 SF Yes No Yes 

63056 MtVic/Blackheath 1872 1993 SC No Yes No 

66062 Sydney 1859 1998 SC,SF Yes Yes No 

68045 Moss Vale 1871 1993 SC No Yes No 

69081 Moruya Heads 1876 1998 SF Yes No Yes 

70080 Taralga 1883 1993 SC No Yes No 

*Note : SC/F-Sydney Close/Far        BC/F-Brisbane Close/Far 

Table 5.3  Contiguous data lengths for Sydney and Brisbane Close/Far site groupings 

Key Site Group Start Finish Length 

Close 1883 1993 111 
Sydney 

Far 1886 1998 113 

Close 1892 1992 101 
Brisbane 

Far 1900 1986 87 
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Figure 5.1 Case study (a) site  positions and (b) site groupings with RHMM neighbouring sites 

indicated. 

 

 

Sydney Far Sydney Close 

Brisbane Far Brisbane Close 
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5.2.3 Water Year: Choice of starting month 

The annual data used here is derived from aggregated monthly data at each site. A 

question arises: what month to use as the start of the water year? Thyer (2001) used an 

index, the SSI, to indicate post calibration which of the 12 months as the start of the 

water year gave the strongest state identification. This index, along with another 

measure of state separation, the WADSI  was used to determine if changes in the water 

year had any influence on persistence identification. Thyer (2001) notes that for his 

multiple site analysis, the starting month did not have a significant effect on the 

persistence structure. In the single site analysis over 40 sites spread across Australia, 

Srikanthan et al. (2001) could not identify any ‘noticeable pattern in the starting 

months’. With little constraint on the water year starting month, the May-April water 

year was selected on the grounds that ENSO events tend to break by the end of Austral 

autumn. The start and finish times for the data series in Table 5.2 correspond to this 

water year, with a series spanning 1900-1986 starting in May 1900 and ending in April 

1987. 

5.3 Application of the HMM, Switch HMM and Regional HMM 

The HMM, full SHMM and full RHMM are now applied to the four sets of data. Within 

each grouping, posterior parameter plots, posterior state series and posterior model 

weight distributions are compared. The aim of this analysis is to gain an understanding 

of each model. This understanding will then be used to interpret the calibration of all 

model variants.  

For all results in this chapter, 200000 posterior samples (5 MCMC paths × 40000 

samples) were generated for each model. This number of samples was determined to be 

adequate based on the ‘scale reduction’ convergence diagnostic of Gelman and Rubin 

(1992) presented in section 3.3.2 being below 1.2 for all parameters. The multiple 

number of paths allowed use of this diagnostic, along with standard visual inspection of 

chain mixing. An equal number of burn in samples were also simulated. The burn in 

samples were also required to show a scale reduction score being below 1.2 to ensure 

that starting effects were eliminated. 
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5.3.1 Sydney Close 

The Sydney Close data set consists of MtVic/Blackheath, Sydney, Moss Vale and  

Taralga. The posterior transition and switch probability distributions are plotted for the 

HMM, full SHMM and full RHMM in Figure 5.2. The applicable parameters are 

organized into three columns, each pertaining to a particular model. A single set of 

regional transition probabilities is given in the first column for the HMM. The regional 

transition probabilities and four sets of switch probabilities (associated with each site) 

are in the second column for the SHMM. Column three compares four sets of regional 

transition probabilities (associated with each site) for the RHMM. These plots are 

bivariate histograms derived from the MCMC samples, with the shading denoting the 

bin count. The shading scale gives the range of bin counts for that particular plot, with 

differing maximum levels depending on the spread of the parameters. Figure 5.3 

presents the posterior state series for all three models.  

We firstly compare the regional transition probabilities identified by each model. The 

SHMM shows the least uncertainty, with a dense mass located near the origin. Note the 

parameter constraint ( ) ( )1 1| |t t t tp r D r W p r W r D− −= = > = =  was imposed for the 

SHMM. The ordinary HMM identifies a less dense cloud, with much greater variation 

shown on ( )1|t tp r D r W−= = . There is some overlap for the SHMM and HMM 

transition probability distributions, however, the mean ( )1|t tp r D r W−= =  locations 

differ markedly, with a greater mean for the HMM. These transition probabilities can be 

interpreted in terms of the state series they produce. Focusing on the HMM and SHMM 

regional state series, denoted by a thick red line, there is generally a high probability of 

being in a dry state for the period 1900-1940 and a higher probability of being in a wet 

state for the period 1940-1985 for both models. However, the HMM shows a greater 

frequency of changing state. This frequency is controlled by the transition probabilities, 

hence the greater ( )1|t tp r D r W−= =  values identified for the HMM model. 

Now we consider the site specific state series and transition probabilities of the RHMM. 

The MtVic/Blackheath and Moss Vale transition probability plots for the RHMM model 

give similar distributions to the HMM model. Sydney shows a greater degree of 

variability, with the ( )1|t tp r D r W−= =  parameter mean being greater than for the 
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HMM or SHMM, yet it overlaps those MtVic/Blackheath and Moss Vale. Taralga has 

the most poorly identified transition probabilities, with a centre of mass well away from 

the origin, and significant spread across the entire parameter space. Indeed the evidence 

suggests that at Taralga the HMM degenerates to a mixture model. The site specific 

state series of the RHMM echo these transition probabilities. The Taralga series dithers 

around the 0.5 probability mark, without any clear identification of periods being in one 

state or another. In contrast, MtVic/Blackheath and Moss Vale identify state series 

clearly, with little dithering, producing dense posterior transition probability distribution 

clouds. The Sydney state series, lies between the two extremes of identification, with 

some general trends identifiable, yet also containing a large degree of dithering. Of 

significance is that although the transition probability clouds of the MtVic/Blackheath 

and Moss Vale series are very similar, the state series are quite dissimilar. If state series 

are similar, then transition probabilities will be similar. However, the reverse does not 

necessarily apply. The reason is that an identified state series is influenced by the 

temporal occurrence of the rainfall, whereas the transition probabilities remain constant 

over time. To demonstrate, consider two sets of data { }1 2
1, : 1,...,t ty y t T+ = , the second set 

being an identical copy of the first, yet occurring one time-step after the equivalent first 

set. Each set fitted individually with the HMM would produce identical transition 

probabilities, yet the state series would be offset by one year.  

The site specific switch probabilities of the SHMM define the degree to which the 

individual site state series follow the overall controlling regional Markov series. The 

regional state structure identified by the model is followed closely by the 

MtVic/Blackheath composite during dry regional periods. The Moss Vale state series 

does not follow the regional series closely, especially when the regional series 

approaches a high probability of being in the wet state. Conversely, Sydney does not 

correspond to a dry regional state well, although during wet regional times it follows the 

regional state most closely. These differences are explained by the switch probabilities. 

The MtVic/Blackheath ( )t tp s W r D= =  distribution is closest to the origin, while 

( )t tp s D r W= =  shows more variation and is further away from the origin. The 

posterior cloud furthest from the origin occurs for Moss Vale, with both switch 
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probabilities being significantly greater than zero. Sydney identifies a low probability of 

switching from the wet state, and the highest probability of switching from the dry state.  

The application of the SHMM to the Sydney Close data demonstrates its ability to 

identify an overlying temporal Markov structure like the HMM, yet allows sites to vary 

from this overall control. Of the four sites, Moss Vale is found to differ from the 

regional state control to the greatest degree in years where there is a high probability 

that the regional state is wet, whilst also displaying a poorly identified state series 

during dry regional years.  

Interpretation of these results can be strengthened when all state series and parameter 

plots are compared, with the RHMM state series shedding some light on the HMM and 

SHMM results. The HMM regional state series and associated transition probabilities 

are well identified, showing the greatest similarity to the MtVic\Blackheath RHMM 

series. Naturally, the individual RHMM series show more variability than the HMM, as 

there is no link between sites at the Markovian state level of the hierarchy. The HMM 

averages out differences in state variability resulting in a smoother regional state series 

with sites that cannot identify RHMM state series (e.g. Taralga) having little effect on 

the overall HMM calibration, whilst the strongly identified MtVic/Blackheath and Moss 

Vale state series influence the HMM series to the greatest degree. The SHMM results 

suggest that the MtVic/Blackheath record is the major influence on the regional state 

series (small switch probabilities), and also that the Sydney and Taralga state series are 

more aligned with the MtVic/Blackheath series overall. This implies that the 

MtVic/Blackheath series shows the strongest evidence of a two state Markovian 

structure. 

The WADSI  introduced in Section 2.6.1 is a measure of how well separated are the wet 

and dry Gaussian rainfall distributions for each site. A WADSI  with little posterior 

probability at zero denotes a well separated distribution. Based on synthetic data 

studies, Thyer (2001) recommends that generated data with WADSI  values of 1 or 

greater is required for identification of a two-state HMM persistence structure, given 

140 years of data, using the single site HMM.  
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The WADSI  distributions for the three models are shown in Figure 5.4. All site WADSI  

distributions for the HMM are significantly greater than zero, indicating well separated 

distributions. The SHMM results are well separated from zero, with the exception of 

Sydney. RHMM sites with strongly identified individual state series 

(MtVic/Blackheath, Moss Vale) show the greatest separation from zero. Overall, the 

HMM has greater mean values than SHMM and RHMM, whilst also having the greatest 

parameter variance. To some extent, these results agree with the results in Thyer (2001) 

who applied the multiple-site HMM to MtVic/Blackheath, Moss Vale and Taralga 

(along with two other sites not used here – Yarra composite and Cataract Dam). In that 

study, Moss Vale was found to have the least probability of exhibiting a two state 

structure according to the WADSI . Within this study, the RHMM Moss Vale state 

series identifies a strong state structure, however it differs significantly from the 

dominant MtVic/Blackheath state series. The strongly identified MtVic/Blackheath state 

series swamps the common climate state across all sites of the HMM, causing Moss 

Vale data to be misclassified as being wet or dry. This in turn results in the state 

separation decreasing for Moss Vale, with a  WADSI  distribution with significant 

probability near zero. 

Finally, the models are compared using posterior model probabilities in Table 5.4. The 

HMM has the greatest posterior weight, being approximately twice the weight of the 

SHMM, with the RHMM having a marginally lower weight than the SHMM. The 

introduced complexity of the HMM generalizations is apparently not justified in this 

case, with the simplest model being sufficient to capture the interannual persistence. 

This result suggests that an overlying regional structure is present, as opposed to 

conditionally independent Markov state series at each site. The well identified transition 

probabilities, and state series of the HMM go some way to explaining this result. The 

RHMM does not identify the Sydney and Taralga state series well, with the state series 

resembling noise, and poor identification of the transition probabilities ineffective. 

Recall that if the transition probabilities satisfy (3.43), 

( ) ( )1 11 | |t t t tp r W r D p r D r W− −= = = + = = , the HMM model degenerates to the two-

state independent mixture model. Taralga shows the most significant probability mass 

about this line, while the majority of the Sydney distribution lies below this line. 

Similarly to the RHMM, the extra complexity of the SHMM is not justified here. A 
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possible reason for this SHMM result is that the majority of sites are not significantly 

different from the regional state series to justify these extra switch parameters. This 

concurs with the RHMM result that an overall regional control is influencing all sites.  

These results do not imply that less complicated SHMM and RHMM variants are not 

justified compared to the HMM. Further comparison of the individual variants will 

determine this. This testing does however indicate strong evidence that Markov 

persistence can be identified over this region, in particular in the MtVic/Blackheath 

series. The RHMM and SHMM results indicate that not all sites are influenced to the 

same degree each year. However, BMS comparison reveals that the simplicity of 

modeling all sites under one regional controlling series outweighs the complexity 

introduced by these models. 

This section has discussed in detail the Sydney Close results. This detail was primarily 

aimed at demonstrating the link between posterior transition and switch probability 

parameters, posterior state series and posterior model probabilities. The remaining data 

sets will not be discussed in as much detail. However, a comparison between sites and 

an overall discussion of this analysis will be given at the end of this section. 
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Figure 5.2 Sydney Close Sampled Posterior distribution of Transition probabilities and Switch 

probabilities for (a) HMM, (b) Switch HMM and (c) Regional HMM. 
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Figure 5.3 Sydney Close Posterior State Series probabilities for (a) HMM, (b) Switch HMM and (c) 

Regional HMM. 
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Table 5.4 Sydney Close posterior model probabilities 

Model Posterior Weight 

HMM 0.5333 

Switch HMM 0.2884 

Regional HMM 0.1783 
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Figure 5.4 Sydney Close Sampled Posterior WADSI distribution for (a) HMM, (b) Switch HMM 

and (c) Regional HMM. 
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5.3.2 Sydney Far 

The Sydney Far sites consist of Bingara, Mudgee, Sydney and Moruya. Bivariate 

histograms and plots of state series are shown in Figure 5.5 and Figure 5.6 respectively. 

The HMM identifies a symmetrical transition probability cloud, located around the 

( ) ( )1 1| |t t t tp r D r W p r W r D− −= = = = =  line. The HMM state series is reasonably well 

identified (little dithering around 0.5), with approximately equal time spent in each 

state. There is less persistence identified here than in the Sydney Close HMM series. 

Nonetheless, the overall 1900-1940 dry and 1940-1985 wet trend identified in the 

Sydney Close calibration remains discernible. 

The SHMM calibration produces more variable transition probabilities than Sydney 

Close, with the imposition of the parameter constraint influencing the resulting state 

series. The posterior state series is similar to the HMM, however the states are not 

identified with the same strength. The switch probabilities generally have density clouds 

centred around the origin, yet are well spread over the parameter space. The individual 

state series do not show any significant trends, with all series (with the exception of 

Bingara) around the 0.5 mark. Bingara follows the regional state series more closely 

during dry regional state due to the  ( )t tp s W r D= =  parameter distribution being 

located near zero. The SHMM had difficulty identifying an overall controlling 

Markovian structure showing dithering around 0.5. The switch parameters for nearly all 

sites indicate that each of the sites need to differ from the identified regional control 

occasionally, however these switch parameters are well spread reflecting the poor 

identification of the overall controlling regional series.  

The individual state series of the RHMM are extremely variable, with no noticeable 

correlation between states at sites. Of the four sites, Bingara dithers closest to the 0.5 

probability mark. Mudgee identifies a relatively wet state series, while Sydney and 

Moruya show frequent switching between the two probability extremes of 0 and 1. 

Consequently, Mudgee shows the most well identified transition probabilities, with 

Sydney and Moruya identifying clouds centred around (0.5,0.5). Such parameter clouds, 

lying around the line ( ) ( )1 1| 1 |t t t tp r D r W p r W r D− −= = = − = =  are effectively 

allowing the Markovian structure to degenerate to a simple mixture model, do not 
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justify the Markovian assumption. This differs from the HMM which did show some 

evidence to justify the Markovian assumption. Again, it seems the complexity of the full 

RHMM introduces a greater degree of uncertainty than the additional information 

gained on climate structure. 

The WADSI  distributions for the three models are shown in Figure 5.7. The 

distributions are quite similar for corresponding sites across all models, with the mean 

values greater than 0.5, and low posterior probability at 0. The exceptions lie with the 

HMM, with Bingara showing significant posterior probability at zero, and Moruya with 

a large mean value. 

The BMS model comparison in Table 5.5 lists the SHMM as being around three times 

more likely than HMM or RHMM. This result can be interpreted as indicating that 

although a Markov structure can be identified (as in the HMM series), there is some 

additional variability not explained by a common climate state or by individual climate 

series. The climate structure is somewhere between these two extremes, here using the 

SHMM to allow some at site anomalies, yet following the overall (albeit weakly 

identified) regional control. 
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Figure 5.5 Sydney Far Sampled Posterior distribution of Transition probabilities and Switch 

probabilities for (a) HMM, (b) Switch HMM and (c) Regional HMM. 
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Figure 5.6 Sydney Far Posterior State Series probabilities for (a) HMM, (b) Switch HMM and (c) 

Regional HMM. 
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Table 5.5 Sydney Far posterior model probabilities 

Model Posterior Weight 

HMM 0.2085 

Switch HMM 0.6090 

Regional HMM 0.1825 

 

Site HMM SHMM RHMM 

B
in

ga
ra

 

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

 0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

M
ud

ge
e 

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

 0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

Sy
dn

ey
 

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

 0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

M
or

uy
a 

H
ea

ds
 

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

 0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

12000

WADSI

C
ou

nt

Figure 5.7 Sydney Far Sampled Posterior WADSI distribution for (a) HMM, (b) Switch HMM and 

(c) Regional HMM. 
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5.3.3 Brisbane Close 

The Brisbane Close sites consist of Caboolture, Cape Moreton, Brisbane and Pittsworth. 

Bivariate histograms and plots of state series are shown in Figure 5.8 and Figure 5.9 

respectively. 

The HMM identifies a variable state series, with a predominantly dry series interspersed 

with short wet periods. The majority of the wet periods lie inside the 1940-1985 wet 

period identified in the Sydney Close and Far calibrations.  

The SHMM state series shows a 1900-1960 regional dry period, with wetter periods 

either side. The SHMM individual state series for Brisbane follows the regional control 

reasonably closely, while Caboolture, Cape Moreton and Pittsworth remain closer to the 

0.5 probability mark.  

The individual RHMM series do not bear much resemblance to either of the HMM and 

SHMM regional series, with the exception of Brisbane. Brisbane appears to be showing 

the strongest evidence of persistence, with RHMM transition probabilities most similar 

to the HMM, and SHMM switch probabilities located near the origin. Pittsworth and 

Caboolture are poorly identified, while Cape Moreton is essentially wet except for three 

dry periods: 1940-1955, 1968-71 and 1977-1986. Cape Moreton’s RHMM behaviour is 

anomalous when compared to the SHMM site series, which followed the predominantly 

dry regional state series reasonably closely. Curiously, though Caboolture is located 

close to Brisbane and Cape Moreton, it does not display a similar SHMM or RHMM 

site state series. It is thought this result may be due to anomalous interactions of the 

RHMM when high rainfall correlations are identified between sites. This topic is 

discussed in Section 5.5 where different methods of modelling spatial correlation are 

compared.  

Figure 5.10 illustrates the WADSI  distributions for the three models. Caboolture and 

Brisbane show zero posterior probability at zero for all models, while Cape Moreton 

and Pittsworth show poor separation generally. The best separation in terms of models 

is given by the RHMM, with WADSI  distributions well separated from zero for all 

sites. 
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Table 5.6 gives the BMS weights for the three models, with the probabilities 

comprehensively favouring the RHMM. This result indicates that the data 

overwhelmingly prefers the RHMM, with different regions for each site. An explanation 

for this behaviour is that there is extra variability present that cannot be accounted for 

by the two other models. The RHMM has no inherent correlation of Markov states 

between sites, whereas HMM and SHMM do, thus allowing greater flexibility in 

producing variability in time series. The choice of the RHMM is due to small-scale 

spatial variation (modelled here by fitting individual correlation coefficients) being 

more dominant in the overall variation than the spatial correlation induced by sites 

being in the same state at the same time.  

These sites differ from the other sites tested in that they are located closer to one 

another, especially Brisbane, Caboolture and Cape Moreton. It is expected this 

closeness (and similar distance from the coast) implies high correlations between sites, 

thus causing small-scale (and possible microscale) variation to have a higher 

proportionate influence on variability than in the previous data sets. This result is 

discussed further when compared against other methods for modelling small-scale 

variation in Section 5.5. 
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Figure 5.8 Brisbane Close Posterior distribution of Transition probabilities and Switch 

probabilities for (a) HMM, (b) Switch HMM and (c) Regional HMM. 
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Figure 5.9 Brisbane Close Posterior State Series probabilities for (a) HMM, (b) Switch HMM and 

(c) Regional HMM. 
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Table 5.6 Brisbane Close posterior model probabilities 

Model Posterior Weight 

HMM 0.0065 

Switch HMM 0.0001 

Regional HMM 0.9934 
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Figure 5.10 Brisbane Close Sampled Posterior WADSI distribution for (a) HMM, (b) Switch HMM 

and (c) Regional HMM. 
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5.3.4 Brisbane Far 

The Brisbane Far sites consist of Cape Capricorn, Brisbane, Miles and Bingara. 

Bivariate histograms and plots of state series are shown in Figure 5.11 and Figure 5.12 

respectively. 

The HMM state series dithers considerably, with few years identified strongly. The 

associated transition probabilities are also poorly identified with a mass spread well 

over the parameter space. A significant proportion of the posterior cloud lies around the 

( ) ( )1 1| 1 |t t t tp r D r W p r W r D− −= = = − = =  line indicating that the series could equally 

be modelled using a two state mixture model. 

The regional state series of the SHMM identifies evidence of a Markovian structure, 

with a predominantly dry state series interspersed with a few wet periods of 10-20 years 

duration and with the transition probabilities showing less variability than that of the 

HMM. The Brisbane site specific state series follows the regional series closely. 

However, the remaining sites dither closely around the 0.5 mark. The Brisbane switch 

parameters are well identified near the origin, while the remaining sites, although being 

centred near the origin, show a much greater spread across the parameter space. The 

Brisbane state series of the RHMM is identified clearly, while the remaining sites dither 

around 0.5. The transition probabilities reflect this, with a strongly identified cloud for 

Brisbane, and the remaining sites showing diffuse posterior clouds. Thus the results 

suggest that Brisbane shows the strongest evidence for a two-state Markovian structure, 

while the other sites are providing little information on an overall controlling 

Markovian structure. The HMM state series suggest that if the sites are to be modelled 

under the one controlling structure, a two state mixture would be preferable; indeed it is 

possible that a single state structure may be preferable, at least for some sites. 

Figure 5.13 illustrates the WADSI  distributions for the three models. The Brisbane 

RHMM WADSI  distribution is the only site with non-significant 0 posterior 

probability, showing the greatest degree of separation. The striking result here, in 

comparison to previous site grouping results, is the poor degree of separation, with a 

wide degree of variability displayed in the WADSI . Miles and Bingara show the 

greatest probability at zero, indicating these sites are very poorly identified. The 
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Brisbane HMM shows positive probability at zero, whereas this was not the case in 

comparison to the Brisbane Close HMM results. The more poorly identified sites are 

causing Brisbane to be less well identified. 

To demonstrate further the possibility that these sites may be better modelled using a 

single state structure, a posterior bivariate histogram is plotted in Figure 5.14 for the 

mean parameters. There are four sets (each site) of mean (wet and dry) parameters for 

each model displayed. The label switching constraint site site
D Wµ < µ  is also plotted. The 

HMM posterior plots show significant density for all sites around the label switching 

constraint. Thus, the wet and dry means are not well separated from one another. The 

Brisbane and Cape Capricorn means show a greater degree of separation for SHMM 

and RHMM. The Miles and Bingara parameters remain in the same position for all 

models, close to the parameter constraint. Srikanthan et al. (2001) concluded for 

Brisbane, Cape Capricorn and Miles that the two state assumption of the single site 

HMM  was ‘possibly’ justified, while Bingara was highly unlikely to exhibit persistence 

based on the WADSI . Visual inspection of the mean parameters in this study leads to 

the same conclusion, with the exception of Brisbane, which shows strong separation 

from the parameter constraint. The length of time series used in this group calibration 

(87 years) is significantly less than the length of individual site calibrations used in 

Srikanthan et al. (2001) (88,134,115 and114 years). Also in that study the water year 

showing the greatest WADSI  for each site was months 7, 8, 2 and 3 respectively, while 

a water year starting in month 5 was used here. Given that such a short record was used, 

and also that we have not used the same water year, it is a testament to the RHMM’s 

flexibility that the Brisbane state series was so well identified in the presence of other 

poorly identified sites.   

Table 5.7 gives the BMS weights for the three models, with the probabilities again 

comprehensively favouring the RHMM. The probable reason for this choice is that the 

two state structure of the HMM is not justified at sites other than Brisbane (and possibly 

Cape Capricorn). Thus the identification of HMM and SHMM transition probabilities is 

biased by sites which should not be included in that single region. The RHMM on the 

other hand allows multiple regions, giving Brisbane the flexibility it requires to identify 

a strong state series, even with such a short amount of data.  
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Figure 5.11 Brisbane Far Sampled Posterior distribution of Transition probabilities and Switch 

probabilities for (a) HMM, (b) Switch HMM and (c) Regional HMM. 
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Figure 5.12 Brisbane Far Posterior State Series probabilities for (a) HMM, (b) Switch HMM and 

(c) Regional HMM. 

 



131 

 Chapter 5 – Switch and Regional HMM Case Studies 
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Figure 5.13 Brisbane Far Sampled Posterior WADSI distribution for (a) HMM, (b) Switch HMM 

and (c) Regional HMM. 

Table 5.7 Brisbane Far posterior model probabilities 

Model Posterior Weight 

HMM 0.0553 

Switch HMM 0.0920 

Regional HMM 0.8526 

 

 



132 

 Chapter 5 – Switch and Regional HMM Case Studies 

Site HMM SHMM RHMM 

C
ap

e 
C

ap
ri

co
rn

 

0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

100

200

300

400

500

600

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

200

400

600

800

1000

1200

 

B
ri

sb
an

e 

0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

100

200

300

400

500

600

700

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

200

400

600

800

1000

1200

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

500

1000

1500

 

M
ile

s 

0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

500

1000

1500

2000

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

500

1000

1500

2000

2500

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n
500

1000

1500

2000

 

B
in

ga
ra

 

0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

200

400

600

800

1000

1200

1400

1600

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

0

500

1000

1500

2000

2500

 0 500 1000 1500 2000
0

500

1000

1500

2000

Dry Mean

W
et

 M
ea

n

500

1000

1500

2000

 
 Figure 5.14 Brisbane Far Posterior mean distributions for (a) HMM, (b) Switch HMM and (c) 

Regional HMM. 

5.3.5 Discussion of full model case studies 

This section has presented application of the HMM, SHMM and RHMM to four case 

studies centred on Sydney and Brisbane. Different models performed better for different 

groupings. The HMM was superior for Sydney Close due to a strong state series being 

identifiable for the grouped sites. For Sydney Far the SHMM had the highest posterior 

probability due to it allowing more at-site variability than the HMM, yet still requiring 

an overall controlling structure. The RHMM performed best for the Brisbane Close sites 

presumably due to high correlations between sites being identified, and the state series 
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being used to add extra variability between sites. The RHMM was again found the 

better model for the Brisbane Far sites, but for a different reason, in that the sites other 

than Brisbane had poorly separated wet and dry means, with those sites probably better 

modelled with a single state structure. 

Given that some sites/regions have identified a single state structure, a generalisation of 

this modelling framework to accommodate this would be to allow different numbers of 

states in different regions. This change would not be difficult to implement to the 

current model in terms of computer coding. However, the resulting number of models 

could become quite large, with longer computation required using the current model 

sampling technique. On the other hand, a model sampling technique such as Reversible 

Jump MCMC could circumvent the problem of calculating the marginal likelihood of 

each model. This suggests the strength of Reversible Jump in that many model 

combinations can be entertained; However, models are sampled at a rate proportional to 

their individual posterior probability. This contrasts with the sampling method used here 

where an equal number of parameters is sampled from each model (after initial 

optimisation) and marginal likelihoods are calculated using the posterior samples. 

Overall, the two models, SHMM and RHMM, have served their purpose in identifying 

homogeneous climate regions. The SHMM shows clearly when a site differs from an 

identified regional state series (eg. Moss Vale). The RHMM confirms the results of the 

SHMM, often indicating that an anomalous site identified by the SHMM should be 

grouped into its own climate region.  

5.4 Comparison of Switch and Regional HMM variants 

Now that general relationships between the parameters, state series, WADSI  and 

models have been recognised at each site, we will use this understanding to interpret 

comparison between the SHMM and RHMM variants. The term variant denotes all of 

the possible models ranging from the HMM to the full SHMM and RHMM. Each of 

these variants has a label with the HMM having the label ( )F,F,F,F  or ( )1,1,1,1  

depending on whether it is being compared to SHMM or RHMM variants respectively. 

The F  here denotes that switch probabilities are not used for a particular site, while T  

would indicate otherwise. The RHMM set of ones indicates that all sites are in region 
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one, while ( )1,1,1,2  indicates site four is in region 2 with the other sites grouped in 

region 1.   

The HMM, SHMM and RHMM variants are now applied to the four sets of data. 

Within each grouping only model averaged posterior state series are compared. 

Parameter plots are not compared due to the higher number of models.  

5.4.1 Sydney Close 

The Sydney Close model averaged posterior state series are shown in Figure 5.15, while 

the posterior model weights for the SHMM and RHMM variants are given in Table 5.8 

and Table 5.9 respectively. Both the SHMM regional and the individual state series of 

the RHMM are similar (with the exception of Moss Vale) and clearly identified, with 

the 1900-1940 dry and 1940-1985 wet periods evident in both. The Moss Vale series 

differs greatly from the remaining sites in the RHMM in that there is more frequent 

switching between states. However, the Moss Vale series is clearly identified also. The 

individual SHMM series follow the regional series closely, with the exception of Moss 

Vale, while MtVic/Blackheath is almost identical to the regional series.  

The model probabilities necessarily reflect the model averaged state series for the 

SHMM and RHMM. The SHMM variants indicate (over all results) that the models 

with switch probabilities on Moss Vale, and no switch on MtVic/Blackheath ( )F, ,T,⋅ ⋅  

are preferred, with the highest posterior weight being ( )F,F,T,F  and ( )F,F,T,T . For the 

RHMM, model  ( )1,1,2,1  dominates, suggesting an individual state series is identified 

in Moss Vale, while the remaining sites are under the one control. The SHMM results 

also suggest that MtVic/Blackheath identifies the strongest state series, whereas Taralga 

and Sydney generally follow the overall control. Of note in these results is that the 

model averaged state series are much more clearly identified than the full model series, 

especially the RHMM.   

Also given in Table 5.9 is a comparison between the best SHMM and RHMM models, 

with the ratio of posterior probabilities. In this case the RHMM variant ( )1,1,2,1  has 

over twice the posterior weight of the SHMM maximum ( )F,F,T,T , with 
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( ) ( )F,F,T,T | 1,1,2,1| 1 2.3p M p M= = =Y Y .  This ratio is given here firstly to indicate which 

of the two modeling structures produced the more likely model, but secondly to provide 

a normalizing constant if the posterior weights for all the SHMM variants are to be 

compared against the RHMM variants. 

Table 5.8 Sydney Close Switch HMM variants posterior model probabilities 

Model Label Posterior Weight Model Label Posterior Weight 

F,F,F,F* 0.022 F,F,F,T 0.014 

T,F,F,F 0.001 T,F,F,T 0.001 

F,T,F,F 0.003 F,T,F,T 0.003 

T,T,F,F 0.000 T,T,F,T 0.001 

F,F,T,F 0.255 F,F,T,T 0.296 

T,F,T,F 0.026 T,F,T,T 0.026 

F,T,T,F 0.174 F,T,T,T 0.151 

T,T,T,F 0.019 T,T,T,T 0.008 

*Note: Transition probability constraint on all models including the non-switching HMM 

Table 5.9 Sydney Close Regional HMM variants posterior model probabilities 

Model Partition Posterior Weight Model Partition Posterior Weight 

1,1,1,1 0.016 1,2,2,2 0.000 

1,1,1,2 0.000 1,2,2,3 0.003 

1,1,2,1 0.728 1,2,3,1 0.039 

1,1,2,2 0.007 1,2,3,2 0.001 

1,1,2,3 0.165 1,2,3,3 0.000 

1,2,1,1 0.000 1,2,3,4 0.005 

1,2,2,1 0.034 ( ) ( )F,F,T,T | 1,1,2,1| 1 2.3p M p M= = =Y Y
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Figure 5.15 Sydney Close Model Averaged Posterior State Series probabilities for (a) Switch HMM 

variants and (b) Regional HMM variants 

5.4.2 Sydney Far 

The Sydney Far model averaged posterior state series are shown in Figure 5.16, while 

the posterior model weights for the SHMM and RHMM variants are given in Table 5.10 

and Table 5.11 respectively. Again, the individual state series of the SHMM and the 

RHMM are similar (with the exception of Bingara) and clearly identified. There is a 

greater degree of transition between states than for Sydney Close. Nonetheless, the dry 

1900-1940 and wet 1940-1985 periods remain discernible. Bingara shows the most 

deviation from the regional SHMM series and the other sites in the RHMM. The 

SHMM models with most significant posterior weight are ( )T,F,F,F  and ( )T,T,F,F , 

indicating that Bingara and Mudgee contribute least to the regional state series. For the 
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RHMM, ( )1,2,2,2  and ( )1,2,3,3  dominate the posterior weights, reaffirming the 

SHMM results by favouring models with Sydney and Moruya in the same region, and 

Bingara and Mudgee out. Like the Sydney Close results, the model averaged state series 

are more clearly identified than for the comparative full models, displaying much less 

dithering around 0.5. In this case the SHMM variant ( )T,T,F,F  has significantly greater 

posterior weight than the RHMM maximum ( )1,2,2,2 , with 

( ) ( )T,T, F,F| 1,2,2,2| 7.4p M p M= = =Y Y .  

The strong favouring of the SHMM variant is presumably due to the simplicity of the 

SHMM compared to the RHMM in identifying a regional state structure, whilst 

allowing some sites to differ from the overall control. In this case, Bingara does differ 

from the overall control somewhat. This causes the RHMM to separate Bingara into its 

own region. However, the SHMM recognizes that there is some information to be 

gained on a regional state within the Bingara record. The information gained on the 

SHMM regional series also explains some of the variability within the Bingara. The 

RHMM contrasts this information exchange between the regional series and Bingara, 

with Bingara in its own region, not having any influence on the regional state series at 

the other sites. Likewise, the regional series for the other sites do not have any influence 

on the variability of Bingara.  

Table 5.10 Sydney Far Switch HMM variants posterior model probabilities 

Model Label Posterior Weight Model Label Posterior Weight 

F,F,F,F* 0.008 F,F,F,T 0.001 

T,F,F,F 0.364 T,F,F,T 0.023 

F,T,F,F 0.007 F,T,F,T 0.004 

T,T,F,F 0.461 T,T,F,T 0.019 

F,F,T,F 0.001 F,F,T,T 0.004 

T,F,T,F 0.040 T,F,T,T 0.013 

F,T,T,F 0.002 F,T,T,T 0.012 

T,T,T,F 0.027 T,T,T,T 0.015 

*Note: Transition probability constraint on all models including the non-switching HMM 
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Table 5.11 Sydney Far Regional HMM variants posterior model probabilities 

Model Partition Posterior Weight Model Partition Posterior Weight 

1,1,1,1 0.043 1,2,1,3 0.006 

1,1,1,2 0.003 1,2,2,2 0.541 

1,1,2,1 0.001 1,2,2,3 0.020 

1,1,2,2 0.079 1,2,3,2 0.006 

1,1,2,3 0.022 1,2,3,3 0.234 

1,2,1,1 0.005 1,2,3,4 0.038 

1,2,1,2 0.002 ( ) ( )T,T, F,F| 1,2,2,2| 7.4p M p M= = =Y Y
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Figure 5.16 Sydney Far Model Averaged Posterior State Series probabilities for (a) Switch HMM 

variants and (b) Regional HMM variants 
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5.4.3 Brisbane Close 

The Brisbane Close model averaged posterior state series are shown in Figure 5.17, 

while the posterior model weights for the SHMM and RHMM variants are given in 

Table 5.12 and Table 5.13 respectively. The SHMM state series strongly identifies 

Brisbane as following the regional series, whereas Caboolture, Cape Moreton and 

Pittsworth have state series closer to 0.5. The RHMM results differ markedly in that, 

Brisbane and Caboolture show a (similar) variable state series, with the 1900-1940 dry 

and 1940-1985 wet period being discernible in each.  Caboolture’s state series differs 

from the full RHMM in that it no longer dithers to the same degree, with it closely 

resembling the Brisbane state series. Cape Moreton shows a strongly identified series, 

being typically wet when Brisbane/Caboolture is dry. Pittsworth again dithers (with a 

greater degree of variation) around 0.5. The model selection results reflect these state 

series, with ( )F,T,F,T  and ( )1,2,1,3  showing significant posterior weights. The SHMM 

results suggest that Cape Moreton and Pittsworth are not influenced to the same degree 

by the climate control identified over Brisbane and Caboolture, while Cape Moreton 

and Pittsworth are in individual climate regions. The RHMM results agree in that 

Brisbane and Caboolture are grouped into the same climate region. In this case the 

RHMM variant ( )1,2,1,3  has significantly greater posterior weight than the SHMM 

maximum ( )F,T,F,T , with ( ) ( )F,T,F,T | 1,2,1,3| 1 108.3p M p M= = =Y Y .  

As mentioned in the full model testing, the comprehensive posterior weighting in favour 

of the RHMM suggests that the RHMM can produce variability within the data using 

the Markov states better than the SHMM, splitting sites into different regions while 

using the Gaussian correlations to account for a greater degree of overall correlation. 

The result that the SHMM Cape Moreton and Brisbane state series are similar, while 

being quite different for the RHMM, is in conflict. This result is attributed to the models 

identifying high (Gaussian) correlations between sites, reducing the information 

available to identify common climate series across grouped sites. This issue is discussed 

further in Section 5.5. 



140 

 Chapter 5 – Switch and Regional HMM Case Studies 

Table 5.12 Brisbane Close Switch HMM variants posterior model probabilities 

Model Label Posterior Weight Model Label Posterior Weight 

F,F,F,F* 0.048 F,F,F,T 0.167 

T,F,F,F 0.048 T,F,F,T 0.177 

F,T,F,F 0.086 F,T,F,T 0.250 

T,T,F,F 0.073 T,T,F,T 0.139 

F,F,T,F 0.000 F,F,T,T 0.002 

T,F,T,F 0.002 T,F,T,T 0.004 

F,T,T,F 0.001 F,T,T,T 0.002 

T,T,T,F 0.001 T,T,T,T 0.000 

*Note: Transition probability constraint on all models including the non-switching HMM 

Table 5.13 Brisbane Close Regional HMM variants posterior model probabilities 

Model Partition Posterior Weight Model Partition Posterior Weight 

1,1,1,1 0.001 1,2,2,1 0.000 

1,1,1,2 0.002 1,2,2,2 0.000 

1,1,2,1 0.000 1,2,2,3 0.001 

1,1,2,2 0.000 1,2,3,1 0.007 

1,1,2,3 0.000 1,2,3,3 0.008 

1,2,1,1 0.055 1,2,3,4 0.121 

1,2,1,3 0.805 ( ) ( )F,T,F,T | 1,2,1,3| 1 108.3p M p M= = =Y Y  
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Figure 5.17 Brisbane Close Model Averaged Posterior State Series probabilities for (a) Switch 

HMM variants and (b) Regional HMM variants. 

5.4.4 Brisbane Far 

The Brisbane Far model averaged posterior state series are shown in Figure 5.18, while 

the posterior model weights for the SHMM and RHMM variants are given in Table 5.14 

and Table 5.15 respectively. Both state series show that Brisbane is the most clearly 

identified site, with the other sites essentially dithering. When compared to the state 

series of the full models, there is little difference, except for some of the other sites 

showing more coherency in the state series for the model averaged RHMM. The 

SHMM models ( )T,F,T,T  and ( )T,F,T,F  have the greatest posterior weights. However, 

the weights are otherwise spread evenly between models. For the RHMM, models 
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( )1,2,3,3  and ( )1,2,1,1  both show significant weight. These results indicate that 

Brisbane strongly identifies a Markov structure, while the other sites show poorly 

identified climate structure. Presumably, this result is due to the other sites (especially 

Miles and Bingara) not having an identifiable two state structure, as demonstrated in the 

WADSI  posterior plots for the full models. 

Table 5.14 Brisbane Far Switch HMM variants posterior model probabilities 

Model Label Posterior Weight Model Label Posterior Weight 

F,F,F,F* 0.006 F,F,F,T 0.034 

T,F,F,F 0.079 T,F,F,T 0.101 

F,T,F,F 0.048 F,T,F,T 0.021 

T,T,F,F 0.070 T,T,F,T 0.018 

F,F,T,F 0.053 F,F,T,T 0.059 

T,F,T,F 0.202 T,F,T,T 0.196 

F,T,T,F 0.051 F,T,T,T 0.011 

T,T,T,F 0.028 T,T,T,T 0.024 

*Note: Transition probability constraint on all models including the non-switching HMM 

Table 5.15 Brisbane Far Regional HMM variants posterior model probabilities 

Model Partition Posterior Weight Model Partition Posterior Weight 

1,1,1,1 0.006 1,2,1,3 0.094 

1,1,1,2 0.005 1,2,2,2 0.015 

1,1,2,1 0.014 1,2,2,3 0.051 

1,1,2,2 0.038 1,2,3,2 0.046 

1,1,2,3 0.019 1,2,3,3 0.343 

1,2,1,1 0.252 1,2,3,4 0.092 

1,2,1,2 0.023 ( ) ( )T,F,T,F| 1,2,3,3| 1 4.0p M p M= = =Y Y
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Figure 5.18 Brisbane Far Model Averaged Posterior State Series probabilities for (a) Switch HMM 

variants and (b) Regional HMM variants 

5.4.5 Discussion of Switch and Regional variants case studies 

This section has presented application of Bayesian model selection on SHMM and 

RHMM variants to four case studies centred on Sydney and Brisbane. When compared 

to the full model case studies of Section 5.3, the results are more interpretable in that the 

most complex models (the full SHMM and RHMM) are not identified as being the most 

probable models. Thus, the uncertainty of the extra parameters is reduced so that only 

parameters aiding identification are included, with a more clearly identified state series 

resulting.  
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The RHMM results have a much stronger meaning than those of HMM. Multiple state 

series are identified, yet sites are automatically grouped into homogeneous climate 

regions. The strongest groupings in terms of posterior weight affect the model averaged 

state series to the greatest degree. 

When the SHMM variants are compared to the RHMM variants using BMS, the 

RHMM was favoured for all site groupings, with the exception of Sydney Far. This 

result indicates generally that the RHMM structure is more flexible in reproducing the 

data. The RHMM has the added benefit that it allows sites to be grouped into different 

regions, whilst the SHMM forces a common climate state on all sites. In some cases 

such as that observed for Sydney Far, this may be preferable to the RHMM. Here the 

common climate state with anomalous Bingara site allows stronger identification than 

the RHMM with Bingara in its own region. However, within the other site groupings, 

the common climate state assumption (with switch anomalies) could not be justified 

compared to the RHMM which allowed sites to be partitioned into their own climate 

region. 

5.5 The Influence of Small-scale Spatial Correlation on Identification 
of State Series 

5.5.1 Introduction 

The case study involving the Brisbane Close group of sites produced some unusual 

results for the SHMM and RHMM calibrations. Even though Cape Moreton is situated 

closely to Caboolture and Brisbane, the model averaged state series of the RHMM 

indicated that Cape Moreton consistently identifies a wet state series, generally being in 

the opposite state of Brisbane and Caboolture. The SHMM Cape Moreton state series 

contradicted this, following the Brisbane state series reasonably closely. Given that 

these sites are close to one another, we would expect the probability of being under the 

same climate influence to be high.  

Comparison of the RHMM variants strongly confirms the result that Cape Moreton is 

not grouped into the same region as Brisbane and Caboolture. The model selection 

process is choosing a model with a lesser amount of large-scale correlation than the 

single region RHMM. When the RHMM state series is examined, this result is stronger 
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in that there is little time where the state series of Brisbane and Cape Moreton are 

synchronised, producing very low large-scale correlation. 

Given that there is a relationship between the number of sites grouped in each region 

(large-scale variation) and the correlation structure used (small-scale variation), several 

different ways of modelling the small-scale correlation are considered in this section. 

This section has a dual motivation: Firstly, it attempts to identify a reason for the 

anomalous behaviour of the Cape Moreton state series. Secondly it seeks to produce 

insight to guide future work for dealing with small-scale correlation structure - 

specifically, to determine whether the Exponential Decay correlation structure is 

flexible enough to compete with the Fitted Correlation structure.  

This section details comparison of the small-scale correlation structures introduced in 

Section 4.4.3: the Zero Correlation, Empirical Correlation and Exponential Decay 

correlation structures along with the Fitted Correlation structure applied in Section 5.4. 

The study is undertaken in the context of comparing the effect of imposing these 

correlation structures upon the RHMM, and observing which RHMM variants are 

favoured depending on the correlation structure. RHMM variants were used here, as 

opposed to SHMM, as the RHMM provides opportunity for the most complex 

interaction of correlation structure and Markovian states and BMS clearly favours 

RHMM over SHMM. If an appropriate small-scale correlation structure is found for the 

RHMM, it is also likely that the correlation structure would be suitable for the less 

complicated SHMM. 

The Exponential Correlation Decay model is then applied to the Sydney Close data to 

check if it is appropriate for sites that show non-anomalous grouping behaviour 

compared to the Brisbane Close state series; that is, for sites where the SHMM series 

were similar to the RHMM series. 

Finally a nugget effect term (microscale variation) is added to the exponential decay 

model in an attempt to capture extra variability within the data. 
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5.5.2   Brisbane Close: Comparison of small-scale correlation structures on 

RHMM variants 

The four approaches at modelling spatial correlation were applied to the Brisbane Close 

data, and the posterior model weights are given in Table 5.16. The model averaged state 

series are shown in Figure 5.19. 

The Zero Correlation model strongly chooses the single region RHMM. Conversely, the 

Empirical Correlation approach produces posterior weights favouring the most complex 

RHMM, with the most significant model being every site separated into its own region 

( )1,2,3,4 . The Exponential Decay Correlation produces a result similar to that observed 

in the Fitted Correlation studies, with the partition ( )1,2,1,3  having maximum posterior 

weight. This partition puts Brisbane and Caboolture into the same climate region, while 

the other two sites are in individual regions. 

The state series of the three tested models reflect the posterior model weights. The Zero 

Correlation state series, due to the grouping of all sites into one region, is a single line. 

This state series is quite variable with a high frequency of changing states. Nonetheless 

the states are strongly identified. However, the 1900-1940 dry and 1940-1985 wet 

periods are barely discernible. The strongly identified nature of this series and the 

grouping of all sites into one region reflects the lack of correlation at the small-scale. 

The state series is producing the overall spatial correlation. 

The Empirical Correlation state series is somewhat similar to the full RHMM presented 

in Section 5.3.3, with strongly identified series for Brisbane and Cape Moreton, while 

Pittsworth and Caboolture dither. As in Section 5.3.3, the Brisbane and Caboolture state 

series are consistently in opposing states. This contradicts the model averaged RHMM 

series presented in 5.4.3 where Brisbane and Caboolture state series were quite similar 

due to the prominence of the model ( )1,2,1,3  grouping these two sites.   
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Figure 5.19 Brisbane Close Model Averaged Posterior State Series probabilities for (a) Zero, (b) 

Empirical and (c) Exponential Decay small scale variation models. 
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Table 5.16 Posterior model weights for RHMM variants modelling small scale variation with (a) 

Zero, (b) Empirical, (c) Exponential Decay and (d) Fitted Correlations. 

Model Zero 
Correlation 

Empirical 
Correlations 

Exponential 
Correlation  

Fitted 
Correlations 

1,1,1,1 1.00000 0.02583 0.00002 0.00080 

1,1,1,2 0.00000 0.02390 0.00001 0.00240 

1,1,2,1 0.00000 0.00061 0.00000 0.00001 

1,1,2,2 0.00000 0.00064 0.00000 0.00000 

1,1,2,3 0.00000 0.00330 0.00000 0.00008 

1,2,1,1 0.00000 0.04527 0.03564 0.05498 

1,2,1,3 0.00000 0.28043 0.96423 0.80508 

1,2,2,1 0.00000 0.00208 0.00000 0.00008 

1,2,2,2 0.00000 0.00143 0.00000 0.00006 

1,2,2,3 0.00000 0.02480 0.00000 0.00090 

1,2,3,1 0.00000 0.02832 0.00000 0.00677 

1,2,3,3 0.00000 0.04340 0.00000 0.00753 

1,2,3,4 0.00000 0.52000 0.00010 0.12131 

Best Model 1,1,1,1 1,2,3,4 1,2,1,3 1,2,1,3 

Relative 
Weight 6.6439E-40 2.9729E-05 9.9996E-01 1.1110E-05 

The Exponential Decay state series is almost identical to the model averaged state series 

of the Fitted Correlation RHMM in Section 5.4.3, reflecting the grouping of Caboolture 

and Brisbane, whilst Cape Moreton is again predominantly wet, except for a few 

occasions near the years 1946,1970 and 1980. These dry Caboolture years (in terms of 

state probability) coincide with high Brisbane/Caboolture wet state probabilities. The 

RHMM has apparently identified conflicting rainfall patterns at these sites for these 

years.  

Overall the state series of the Exponential Decay and Fitted Correlation state series are 

quite similar. The empirically estimated correlation structure differs in that Caboolture 

and Brisbane are not grouped, resulting in a poorly identified Caboolture series. The 

Zero Correlation series is much more variable than the other series reflecting the 

compensation for lack of small-scale correlation. 
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When the most likely models for each correlation structure are compared (at the bottom 

of Table 5.16), it is clear that the Exponential Decay structure is overwhelmingly 

superior, with the Empirical and Fitted correlation structures on approximately equal 

terms, and the Zero correlation structure lagging far behind.  

The WADSI  distributions for the most likely models in each class are presented in 

Figure 5.20. The Zero Correlation structure shows the greatest separation, with all sites 

having very few samples near 0WADSI = . The Exponential Decay model shows 

marginally more separation than the Empirical Correlation model (especially for 

Caboolture). The fact that the separation is greatest for the zero correlation model, yet 

the exponential decay model is overwhelmingly favoured in terms of model weight 

indicates that use of the WADSI  to distinguish the better model (signified by greater 

separation) is not appropriate here. Due to parameter interactions associated with 

allowing small-scale correlation (discussed later in this section), such separations are 

not necessarily required to model the data to the same accuracy. 

How can these results be explained? That is, why is the Exponential Decay favoured so 

strongly over the other parameterisations? Also, why do the Exponential Decay and 

Fitted Correlation structures group Caboolture and Brisbane into a single region while 

the empirically estimated correlations favour all sites being partitioned into individual 

regions? And finally, why is the state series of Cape Moreton constantly at odds (with 

the exception of the Zero Correlation state series) with Brisbane and Caboolture? The 

answer to these questions lies within the one altered variable across this comparison: the 

correlation between sites. 
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Figure 5.20 Brisbane Close  RHMM Sampled Posterior WADSI distribution for (a) Zero, (b) 

Empirical and (c) Exponential small scale correlation structures. 

The distribution of the correlation parameter between each site is plotted for the 

Exponential and the Fitted Correlation models in Figure 5.21. The correlation plots are 

presented for the maximum posterior weight model ( )1,2,1,3  in both cases. The 

empirically estimated correlation is also plotted as a solid line. 
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 Figure 5.21 Brisbane Close correlation distributions for (a) 1,2,1,3  Fitted and (b) 1,2,1,3 

Exponential Decay small scale correlation models. Empirical correlations are marked by solid line. 

The Fitted Correlation RHMM offers the most flexibility in describing small-scale 

correlation structure. The other models have fewer parameters but are more constrained 

in their description of small-scale correlation. If a less parameterised correlation 

structure is applied and provides the same inference on the correlation parameters, BMS 

will choose the less parameterised model. Essentially, this is what is occurring with the 

Exponential Decay structure being favoured so heavily over the Fitted Correlation. As 

Figure 5.21 shows, the correlations of the Exponential Decay generally lie well within 

the correlation distributions for the Fitted Correlation. As there is only one parameter 
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for the Exponential Decay versus six for the Fitted Correlation model, the Exponential 

Decay model is favoured. The Fitted Correlation plots illustrate why the Empirical 

Correlation model is not chosen over the Exponential Decay. Although the Empirical 

correlations lie within the bulk of the Fitted Correlation distributions, the empirical 

correlations are near the lower tail for nearly all sites. Thus a parameterisation such as 

the exponential decay (only one extra parameter), with a distribution centred near the 

mode of the fitted correlation will be preferred. Similar comments apply to the Zero 

correlation model, with the Fitted Correlation distributions lying well away from zero. 

We now turn to the second question; why do the Exponential Decay and Fitted 

Correlation structures group Caboolture and Brisbane into a single region while the 

empirically estimated correlations favour all sites being partitioned into individual 

regions? Of the correlation plots in Figure 5.21, the Caboolture-Brisbane empirical 

correlation is contained within the fitted (and exponential) correlation distribution to the 

greatest degree. Hence, as this empirical correlation does not differ from the fitted 

correlation significantly, the reason for grouping Caboolture and Brisbane into the same 

region must lie with the correlations between other groupings. For the remaining sites, 

the empirical correlation lies on the lower tail of the fitted correlation distribution, 

sometimes being separated well away from the fitted correlation distribution (eg. 

Caboolture-Cape Moreton). Of course, these correlations alone do not explain why one 

model is chosen over another, it is the interrelationship between all parameters of the 

model.  

To demonstrate the relationship between these correlations and the selected model, a 

bivariate plot of annual rainfall between each site is given in Figure 5.22. Ellipses 

indicating the 95% probability region of the Gaussian distribution for each site state 

combination { }, , ,DD DW WD WW  are also plotted. The covariance for each Gaussian 

distribution was calculated for each combination by taking the posterior expectation 

from the MCMC samples using the mean, standard deviation and correlation. The 

ellipses are plotted for the ( )1, 2,1,3  Fitted Correlation and ( )1, 2,3,4  Empirical 

Correlation models. The Fitted Correlation plot is shown here, rather than the 

Exponential Decay (which favoured the same grouping of sites), as Fitted Correlation 
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represents the most general correlation structure – in this way the grouping of sites 

cannot be attributed to the functional form of the Exponential Correlation structure. 
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Figure 5.22 Brisbane Close observed annual rainfall and bivariate Gaussian distributions for (a) 

(1,2,1,3) Fitted and (b) (1,2,3,4) Empirical small-scale correlation models. Ellipses identify the 95% 

probability region for each of the site state combinations. 
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It is noted firstly that for all observed distributions, the majority show a fat upper tail. 

That is, there are several outliers compared to an approximately Gaussian distributed 

marginal. As the wet mean is constrained to be greater than the dry mean, it will be the 

wet distribution that accommodates these outliers. Given that the upper tail shows more 

variability, we would expect the wet distributions to also show more variance.  

As the weight of each data point, in terms of log-likelihood, increases quadratically with 

distance from the mean of the Gaussian distributions according to:  

 ( )( ) ( ) ( )11
log | ,

2t t t t t

T

t R R t R R t Rp −∝ − − −y � � y � � y �  (5.1), 

we would expect the outliers to have a disproportionate effect on the shape and location 

of the wet distribution. Indeed this is the case for all the Gaussian distributions shown 

here, with the WW  state site combination (shown in green) consistently showing greater 

variance for each site than the DD  (magenta). The WW  distributions tend to 

accommodate the outliers along their major axis. 

Returning to the issue of the Caboolture-Brisbane grouping, Caboolture and Brisbane 

are the only sites grouped in the Fitted Correlation model, while in the Empirical 

Correlation model they remain ungrouped. Consequently, the state combinations DW  

(x-axis site=dry, y-axis site=wet) shown in cyan and the WD  (x-axis site=wet, y-axis 

site=dry) shown in red, for the Caboolture-Brisbane Fitted Correlation model are not 

used. That is, these Gaussian distributions are not used for the ( )1, 2,1,3  Fitted 

Correlation model. Given that the correlation for Caboolture-Brisbane is similar for 

both models, why are the DW  and WD  combinations not required for the fitted 

correlation model? As stated before, the answer lies with the other sites. It is of note 

here that the WW  distribution shows greater variance for the fitted correlation model 

than the empirical, thus capturing the outliers to a greater degree. Overall, the fitted 

correlation model is allowing the individual Brisbane and Caboolture standard 

deviations to be larger. 

Comparing the Empirical and Fitted Correlation ellipses across all sites, the most 

obvious difference between the two methods is that the wet variance of Caboolture is 

greater for the fitted correlation; this is especially evident within the Caboolture-
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Pittsworth plot. Within that plot, the variance accommodates the outliers to a greater 

degree than the Empirical Correlation. The prior on the variance for both models is 

equal. Therefore the difference in variance is due to the constraint of the Empirical 

Correlation structure a priori fixing the correlation.  

Figure 5.23 shows a regression plot between Caboolture-Pittsworth and Cape Moreton-

Brisbane further identifying these outliers. The points ( )642,2742  and ( )922,2840  on 

the Caboolture-Pittsworth plot are respectively 3.9 and 3.1 standardized (Gaussian) 

residuals from the regression line. 95% of Gaussian distributed data should lie within 

two standard deviations. Given that one of the outliers mentioned here is nearly 4 

standardized residuals from the regression line, the influence on the likelihood 

according to (5.1) will be substantial. There are similar outliers for the remaining site 

pairings, with the exception of Brisbane-Caboolture. The Pittsworth rainfall 642 , is 

consistently an outlier across all site pairings. 
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Figure 5.23 Annual rainfall regression plot for Caboolture-Pittsworth and Cape Moreton-Brisbane 

The Caboolture-Pittsworth ellipse plots illustrate that the Fitted Correlation model has a 

greater slope for WD , attempting to accommodate the outlier to the right of the WD  

ellipse. To accommodate this outlier to the same extent (all other parameters being 

equal), the Empirical Correlation (having a lower coefficient of correlation) must 

increase either the Pittsworth wet or Caboolture dry variance. Indeed, it is observed that 

the Caboolture dry variance is increased for the Empirical Correlation fit. Likewise, in 

accommodating the outliers ( )642,2742  and ( )922,2840 , the Empirical Correlation 

model must also increase either the Pittsworth dry or Caboolture wet variances to fit 

these outliers to the same degree. The model cannot increase variance on all 

distributions due to a few outliers, as the bulk of the remaining data points will be less 
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well modelled. Thus the Empirical Correlation standard deviations compromise, 

allowing the Pittsworth wet variance to increase, while decreasing the Pittsworth dry 

and Caboolture wet variances compared to their Fitted Correlation counterparts. 

The ability of the Fitted Correlation model to identify a greater variance for Caboolture, 

due in some part to its relationship with Pittsworth, finally gives insight into the 

grouping of Caboolture and Brisbane. As a greater wet variance is permitted, and there 

are no outliers lying off the major axis of the WW  Brisbane-Caboolture ellipse, it is 

suggested the DW  and WD  distributions are not required. 

Considering the influence of outliers on identified parameters, it is not surprising to 

observe that for the remainder of sites that show outliers well off the major axis of the 

observed data, that grouping of these sites into the same region did not occur. This is 

particularly the case for Pittsworth, with the data point 642  consistently being a 

significant outlier for all site pairings, thus ensuring Pittsworth was not grouped with 

the other sites. For other site groupings, such as Cape Moreton-Caboolture and 

Brisbane-Cape Moreton, there are outliers off the major axis, with the DW  and WD  

distributions being required for both the Fitted and Empirical correlation models. Thus, 

the data does not support grouping of Cape Moreton and its nearby neighbours Brisbane 

and Caboolture, answering the final question posed regarding anomalous results. 

On examining the Cape Moreton data series, it is noted the Brisbane-Cape Moreton 

outlier ( )1835,1416  occurs in 1970. According to the regression performed in Figure 

5.23, this point is 3.2 standardised residuals away from the regression line, again being 

quite significant. Returning to the model averaged state series of Figure 5.17 and Figure 

5.19, for all of the RHMM models with positive small-scall correlation (fitted, 

exponential and empirical correlations) 1970 identifies an uncharacteristically wet 

Brisbane and dry Cape Moreton state. Thus, the influence of the outlier is demonstrated 

even further, splitting the state series so as to not be in the same state. Of course, as 

much of the data is better modelled by the outlier ellipses ( ),DW WD  than the same 

state ellipses ( ),DD WW , the state series will prefer to have mixed states at each site for 

a time proportionate to the goodness of fit (defined in (5.1)) of the Gaussian density 

signified by the ellipse. This forces the state series between sites to be mirroring 
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themselves on some occasions. This behaviour is observed within the Brisbane and 

Cape Moreton state series, with the resulting transition probabilities accordingly 

showing symmetry about the ( ) ( )1 1| |t t t tp r D r W p r W r D− −= = = = =  line as 

demonstrated in Figure 5.8. Such effects on state series are a shortcoming of the current 

RHMM specification, as the state series appear to be affected largely by outliers, when 

in reality the sites may be under the same climate influence.  

Relationships identified in this section between the correlation and variance parameters 

demonstrate three major points. Firstly, fitting correlations rather than applying an 

empirically estimated value provides more flexibility in reproduction of observed data, 

allowing accommodation of outliers to a greater degree. Secondly, if a functional 

correlation structure approximates the fitted correlation distribution well, it will be 

overwhelmingly favoured due to its parsimony. Finally, the non-Gaussian nature of the 

data can have a large effect on inference for a model which uses Gaussian distributions, 

with outliers potentially having a disproportionate effect on inferred parameters and 

state series. 

5.5.3 Sydney Close: Exponential Decay correlation 

The Exponential Decay model was applied to the Sydney Close group of sites. The 

resulting posterior model weights for the RHMM variants are given in Table 5.17, while 

the model averaged state series is presented in Figure 5.24. 

The RHMM site grouping favoured by the Exponential Decay correlation structure is 

( )1,2,2,1 , grouping MtVic/Blackheath-Taralga and Sydney-Moss Vale. This differs 

from the Fitted Correlation results where the  ( )1,1,2,1  model was preferred, leaving 

Moss Vale in its own region, with the other sites in a single group. The model averaged 

state series reflects this grouping with the MtVic/Blackheath and Taralga state series 

showing strongly identified dry periods from 1900-1930 and 1985-1994, with the 

remainder being strongly wet state. The Sydney and Moss Vale state series is 

predominantly dry with intermittent wet periods, showing a greater degree of 

variability, while not dithering. Also of note here is that the best Exponential Decay 

model when compared with the best Fitted Correlation models showed the posterior 

ratio of ( ) ( )exp fit1,2,2,1| 1,1,2,1| 2.8p M p M= = =Y Y . 
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Table 5.17 Sydney Close Exponential Decay RHMM variants posterior model probabilities 

Model Partition Posterior Weight Model Partition Posterior Weight 

1,1,1,1 0.001 1,2,2,2 0.000 

1,1,1,2 0.037 1,2,2,3 0.196 

1,1,2,1 0.081 1,2,3,1 0.172 

1,1,2,2 0.000 1,2,3,2 0.001 

1,1,2,3 0.015 1,2,3,3 0.000 

1,2,1,1 0.000 1,2,3,4 0.035 

1,2,2,1 0.460 ( ) ( )exp fit1,2,2,1| 1,1,2,1| 2.8p M p M= = =Y Y  
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Figure 5.24 Sydney Close Model Averaged Posterior State Series probabilities for the Exponential 

Decay small scale variation model. 

To explain the differing groupings occurring for the Exponential Decay correlation, the 

correlation distributions of both the ( )1,1,2,1  Fitted and ( )1,2,2,1  Exponential models 

are plotted versus distance in Figure 5.25. The correlation histograms for these two site 

groupings are given in Figure 5.26, whilst the associated Gaussian 95% ellipses for each 

site pairing are produced in Figure 5.27. 

It is noted firstly that the Exponential Decay correlation distributions do not correspond 

to the Fitted correlation distributions as well as the Exponential Decay correlations of 

the Brisbane Close groupings shown in Figure 5.21. This is because the fitted 

correlations do not display a consistent relationship with distance between sites. This is 
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exemplified by the Moss Vale-Taralga site pair with the Exponential Decay correlation 

being significantly higher than the fitted correlation due to Moss Vale-Taralga having 

the shortest distance between sites. Over all site groupings, MtVic/Blackheath-Moss 

Vale and Moss Vale-Sydney are the only site pairings to be lower than the fitted 

correlation, while MtVic/Blackheath-Taralga is within the fitted distribution. Sydney-

Taralga and Moss Vale-Taralga have correlation greater than that of the fitted 

distributions. A compromise is made by the Exponential decay model, with sites having 

higher or lower correlations than would be produced from fitting individually depending 

on distance between sites. Given that a correlation trend with distance has been applied 

to the RHMM, yet the fitted correlation does not display this trend (for all sites), it is not 

surprising to observe that the best model for the Exponential Decay RHMM was not as 

overwhelmingly favoured compared to its Fitted Correlation counterpart as in the 

Brisbane Close testing. That is, the Bayes factor gap between the Fitted Correlation and 

Exponential Decay model is decreased (for Sydney Close) as the Fitted Correlation is 

identifying a more complex spatial structure than the Exponential Decay can provide. 

However, the Exponential Correlation still has a greater marginal likelihood due to its 

parsimony. 
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Figure 5.25 Empirical, Fitted and Exponential Decay Correlation versus distance for Sydney Close 

RHMM. 
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Figure 5.26 Sydney Close correlation distributions for (a) (1,1,2,1) Fitted and (b) (1,2,2,1) 

Exponential Decay small scale correlation models. Empirical correlations are marked by solid line. 
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Figure 5.27 Sydney Close observed annual rainfall and bivariate Gaussian distributions for (a) 

(1,1,2,1) Fitted and (b) (1,2,2,1) Exponential small-scale correlation models. Ellipses identify the 

95% probability region for each of the site state combinations. 

The 95% Gaussian ellipses shown in Figure 5.27 give a clue to the changes in grouping. 

As some changes in correlation structure have been caused by the simplicity of the 

Exponential Correlation Decay model, the ellipses will be forced to be thinner with a 
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higher correlation, or fatter with lower correlation. On some occasions the variance of 

the affected ellipse decreases to compensate for forced lower correlations (e.g. 

MtVic/Blackheath-Moss Vale). For other site pairs (e.g. Moss Vale-Sydney), site 

grouping occurs due to the fattening of the ellipse, with the grouped model no longer 

requiring the DW  and WD  ellipses as the outliers can be accommodated by the 

enlarged WW  and DD  distributions. This grouping did not occur for 

MtVic/Blackheath-Moss Vale due to the presence of a significant outlier lying just 

outside the WD  ellipse. On some occasions the variance of the affected thinned ellipse 

increases to compensate for forced higher correlations (e.g. Moss Vale-Taralga). For 

other site pairs (Sydney-Taralga, MtVic/Blackheath-Sydney), site splitting occurs due to 

the thinning of the ellipse, with the split model requiring the DW  and WD  ellipses to 

account for outliers that cannot be accommodated by the thinned WW  and DD  

distributions. Site grouping did not occur for the fitted correlation Moss Vale-Taralga, 

even though fatter ellipses were present compared to the exponential decay, again due to 

the presence of outliers. The splayed shape of the distribution requires the DW  and 

WD  ellipses. 

Some insight has been gained on interpreting the differing results between the fitted and 

exponential correlation RHMM models. Of note is that the Exponential Decay will not 

necessarily produce correlation distributions, and hence site groupings, similar to that of 

the Fitted Correlation model. Lower correlation coefficient distributions tend to produce 

higher amount of grouping, and vice versa for higher correlations. Whether or not the 

exponential correlation decay is more justifiable than the Fitted Correlation model, is a 

problem of model selection. Sydney Close RHMM variants slightly favoured the 

( )1,2,2,1  exponential correlation over the ( )1,1,2,1  in terms of ability to reproduce the 

data (marginal likelihood). However, the model averaged state series differed 

significantly. Thus, the marginal likelihood alone is not an indicator how well the state 

series represents the data, but rather how well the data is explained by the overall 

model.  

It is noted here that the Exponential Decay generally produced slightly greater marginal 

likelihoods (and therefore more probable models) than the fitted correlations, for all site 

groupings (see Appendix B), for both the SHMM and RHMM. However, at the stage of 



163 

 Chapter 5 – Switch and Regional HMM Case Studies 

writing this thesis, in depth study of variation in hyperparameters on the Exponential 

Decay has not been undertaken. In line with the testing of Table 5.16, it is expected that 

forcing a lower degree of small-scale correlation with the Exponential Decay model, 

would cause a higher degree of site grouping. The weakly informative prior chosen here 

was based on observed correlations between all sites used in this study. However, it is 

clear that the overall variation is contributed to by both the small-scale Gaussian 

correlations, and the correlations induced by coherent state series between sites. Future 

testing may find that forcing a lower degree of small-scale correlation through the prior 

may produce more probable models than those used here. 

5.5.4 The nugget effect 

Although not fully presented here (see Appendix B) some initial calibrations to the 

Sydney Close and Brisbane Close groupings with a microscale variation (nugget effect) 

term added were undertaken. The extra variation term was applied by the imposition of 

a non-correlated Gaussian component with constant variation over all sites according to 

Section 4.4.3. For the testing with the fitted correlations, this made little difference to 

the marginal likelihoods. However, for the Exponential Decay correlation models, 

significantly higher marginal likelihoods resulted for Sydney Close RHMM. As the 

fitted correlation distributions were not reproduced by the Exponential Decay model for 

Sydney Close, the nugget effect term is allowing an extra source of variability to 

account for these differences. The extra variability is not required in cases where the 

exponential decay matches the fitted correlations well (Brisbane Close). It is expected 

as more sites are included in the analysis, a nugget effect term such as this will become 

more identifiable, and more justifiable. Although a nugget term was not used in the 

Fitted Correlation results, where enough flexibility was presumably provided to 

compensate for its absence, fitting correlations is less tenable for a larger number of 

sites. Hence, a functional relationship (such as the Exponential Decay) for the small-

scale correlation, coupled with a microscale variation term providing an extra source of 

variation becomes more attractive.  

5.5.5 Discussion of small-scale correlation structure 

The examination of the small-scale correlation structures has shed light on the effect of 

outliers on state series. The small-scale correlation structures used here (both fitted and 
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exponential decay correlation) are vulnerable to disproportionate influence by outliers, 

sometimes having marked effect on the state series produced. The Brisbane Close study 

demonstrated this with Cape Moreton not being grouped with its nearby neighbours 

Caboolture and Brisbane. This anomalous splitting/grouping of sites is caused by the 

non-Gaussian splayed nature of the data. An approach to remedy this, while still 

maintaining the current model structure would be to transform the rainfall data to more 

closely resemble a Gaussian distribution. Annual hydrological data is often transformed 

using the Box-Cox transformation (as defined in the case studies of Section 3.10.2). 

Alternatively, the power transform:  

 { 0
0 0ty

γω ω >= ω ≤  (5.2), 

where 0γ > , was used by Sanso and Guenni (2000) for daily rainfall. It is expected that 

use of such a transform would reduce the effect of outliers, especially for the WW  state 

site combination. The WW  distribution was the most affected in all case studies here as 

the outliers tended to be at the upper tail of the rainfall distribution. By reducing the 

effect of outliers, the model has a higher chance of identifying the state series it was 

designed for. 

The preliminary testing has indicated that an exponential correlation decay structure 

provides an appropriate method of incorporating small-scale variation. This single 

parameter structure, is less parameterised than fitting correlations between every site, 

and is therefore attractive in terms of parsimony. Although not reproducing the fitted 

correlation distribution for the Sydney Close sites, the Exponential Decay was still 

favoured over the Fitted Correlation model in terms of marginal likelihood.  

The introduction of an extra source of variability using micro-scale variability (or the 

nugget effect) may increase the marginal likelihood of the Exponential Decay model. 

When applied to a larger number of sites, it is expected that the nugget effect will be of 

more importance, compensating for the simplicity of the Exponential Decay. 

5.6 Discussion 
Consideration of the full model calibrations, variant model comparisons and testing of 

correlation structures suggests two issues need to be addressed in a discussion, firstly 
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whether the new model structures are justified, and secondly, the future directions of 

research.  

5.6.1 Justification of SHMM and RHMM assumptions 

The SHMM and RHMM have both identified state series significantly different than the 

HMM, with each providing different mechanisms for individual sites to deviate from 

the HMM regional controlling state. Although, more flexibility is allowed in state 

series, the SHMM and RHMM assumptions must be compared to the original HMM 

specification if they are to be justified. The tool used to test model hypotheses in this 

thesis, Bayesian model selection, is used to determine which modelling structure is 

more appropriate given a particular set of sites. In one case study (Sydney Far), an 

SHMM variant provided the most likely model (as opposed to the HMM or RHMM), 

indicating that the extra flexibility of allowing anomalous sites states are justified. In the 

remaining case studies, the RHMM variants show greatest posterior weight, indicating 

that the multiple region RHMM is more justifiable than an single region HMM. In no 

cases (except the zero small-scale correlation Brisbane Close test) does the HMM 

produce a maximum marginal likelihood comparable to the SHMM and RHMM.   

Given that the HMM generalisations have produced variants with significantly greater 

posterior weight than the HMM, it is believed that the generalisations are justified. Of 

course, further evaluation of the models is suggested on more sites, in different areas. 

What has been demonstrated here is that the SHMM and RHMM provide a means of 

determining which sites should be included in a HMM analysis. Moreover, the BMS 

model averaging technique removes the need to choose which sites are included, 

weighting the models according to their posterior weight.  

Although not undertaken for the case studies presented previously, weighting of the site 

grouping edges according to the posterior model weights could give some idea of the 

overall (model averaged) state correlation introduced by the RHMM variants. An 

example of such a map is given in Figure 5.28 for two preliminary 7 site RHMM 

calibrations (see Appendix B) using the Exponential Decay correlation structure 

coupled with a nugget effect term. For a larger number of sites, this provides an easily 

viewable map of which sites are likely to be grouped into the same region, and therefore 
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into the same state. Within Figure 5.28, the thicker the edge connecting site nodes, the 

greater the probability the two sites are within the same region. 

Bingara 

Mudgee 

Moruya Heads 

Sydney 
Taralga 

Moss Vale 

MtVic-Blackheath 

Cape Capricorn 

Cape Moreton 
Brisbane 

Bingara 

Miles 

Pittsworth 

Caboolture 

Figure 5.28 RHMM 7 Site exponential decay with nugget effect regional probability map. 

5.6.2 Future directions of research 

This study has made some inroads to modelling the spatio-temporal stochastic structure 

of annual rainfall. However, there are significant opportunities for extending this work. 

In terms of overall model structure, other generalisations of the HMM are possible. A 

spatio-temporal HMM with each site’s state dependent not only on the previous 

timestep state, but also the state of surrounding sites seems a worthwhile direction. This 

approach is essentially a hybrid of HMM for time series and a Markov random field on 

a lattice. Such a model may reduce the reliance on BMS in choosing which model 

variant is most appropriate.  

Alternatively, related state space models such as the dynamic linear models (Sanso and 

Guenni, 2000) or the shifting mean models (Fortin et al., 2002, Sveinsson et al., 2003) 

provide a flexible structure that could be used to capture the conceptual climate state 

variability. To the author’s knowledge, altering the climate state across different sites 

has not been undertaken in these models, and as such the approach taken here for the 

RHMM, could be applied to these models, breaking the sites into different climate 
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regions with a climate state modelled in each region. Also, the setup of the RHMM 

regional partitioning defining the model could be altered such that partitioning is 

undertaken through a hierarchical indicator within the model itself. This however would 

require reformulation of the indicator setup for identification purposes. 

Hierarchical models show great promise in modelling complex spatio-temporal 

processes (Wikle et al., 2001). There is opportunity within HMM to use a greater 

hierarchical structure. For example, means and variances could be modelled as coming 

from a regional pool/distribution. Also, only annual rainfall has been used in the 

calibration of the models used in this study. Other related atmospheric indices and 

variables such as the Southern Oscillation Index or the Interdecadal Pacific Oscillation 

could be incorporated into the HMM structure. This would at least make the 

simulations/predictions consistent with such indices automatically, such as in the GCM 

downscaling approach exemplified in Hughes et al. (1999). 

The Markovian state structure and site groupings identified have shown some sensitivity 

to the small-scale correlation structure. An exponential correlation decay with a 

Gaussian nugget effect for microscale variation should be trialled in further studies. It is 

expected that calibrations to a greater number of sites will provide insight into whether 

such a structure is justifiable, with many other well known correlations relationships 

possible. Of significant importance is the issue of outliers, with the Gaussian 

distributions being affected strongly. The Box-Cox transformation or that provided (5.2) 

may normalise the data sufficiently to reduce the splitting effect observed for the 

Brisbane Close case studies.  

Regarding model selection, the possibility of using Reversible Jump MCMC should be 

investigated further. It is believed this model jumping technique provides a much more 

efficient means at estimating posterior model weight, as it removes the need to evaluate 

the marginal likelihood for every model. It is warned however, that the RJMCMC is 

quite complex, and it is probable that implementation would require a significant 

amount of work.  

Methods of incorporating missing data have not been included in this study. Given that 

the models are currently limited by the length of concurrent data, the model is currently 

throwing away much data at the ends of the rainfall series based on the shortest record. 
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Much of this information on the state series could be used to aid overall identification. 

Such a method is vital in areas with short ( )80 years<  annual rainfall records. 

5.7 Conclusion 
This chapter has presented application of the HMM, Switch HMM and Regional HMM 

to four sets of data located in Eastern Australia. The first section provided a detailed 

analysis of the three models, comparing parameter uncertainty, and its relationship with 

the individual site state series. From this analysis, interpretation of the testing of the 

SHMM and RHMM variants could be undertaken. Within the variant testing, the two 

case studies located around the key site of Sydney (Close and Far), identified a 

predominantly dry period from 1900-1940, and predominantly wet period from 1940-

1985. The case studies centred on Brisbane showed a less identifiable persistence 

structure, with some of the sites indicating evidence in favour of a single state model.  

The HMM generalisations found greater posterior weight according to Bayesian model 

selection than the original HMM, indicating that the relaxed regional climate state 

assumption was justifiable. Generally, the RHMM variants produced models with 

greater marginal likelihood than the SHMM variants, indicating the RHMM allowed 

more flexibility to reproduce the variability within the data. As such, the RHMM model 

averaged state series will be used in Chapter 6 to condition the event based rainfall 

model DRIP. Further development of the small-scale correlation structure was 

discussed, with functional relationships such as the exponential decay model being 

preferable to fitting correlations at every site as the number of sites increases.  
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Chapter 6 Application of HMM to DRIP 

6.1 Introduction 

The Australian climatic regime is influenced by several global climate circulations.  

These circulations produce the high variability and intra- and inter-annual persistence 

that is a common feature of Australian hydro-climatic data. Current short-timescale 

point rainfall models do not explicitly account for this persistence. As a result, the 

variability of annual rainfall may be significantly underestimated. One way to deal with 

this problem is to condition the short-timescale rainfall model on the climate state 

simulated by a model of long-term persistence such as the HMM (Katz and Zheng, 

1999, Thyer and Kuczera, 2000). 

The point rainfall model we have chosen, detailed in Heneker et al. (2001), is an 

extension of the work of Eagleson (1978) who presented a simple event based 

rectangular intensity pulse model. The stochastic rainfall model, DRIP which stands for 

Disaggregated Rectangular Intensity Pulse, has previously shown good results for 

reproducing aggregated rainfall statistics, IFD curves and mean annual rainfall. 

However, DRIP was unable to satisfactorily simulate annual rainfall variability. This is 

because DRIP, typical of its genre, only allows for intra-annual seasonality of the 

rainfall process. Although seasonality is accommodated, storm arrivals nonetheless are 

independent events. As a result, DRIP has no mechanism to simulate intra- and inter-

annual persistence. Where this is significant, DRIP is unable to reproduce the variability 

of rainfall at aggregation scales of a year. 

This chapter explores the inclusion of the HMM in the simulation of event-based 

rainfall. While particular attention is given to the reproduction of the distribution of 

annual rainfall, important short timescale statistics are checked to ensure that DRIP's 

overall performance has not been compromised. Satisfactory reproduction of both long 

and short timescale statistics is necessary if the rainfall model is to be used to simulate 

flood and drought climate sequences. 

A case study (Case Study I) based on the work detailed in Frost et al. (2002) is 

presented first. This study demonstrates the calibration of the DRIP model at Brisbane 

and Sydney using conditioning on the original HMM of Thyer (2001). The conditioned 



170 

 Chapter 6 – Application of HMM to DRIP 

two-state DRIP model is compared to the original DRIP (single state) specification, and 

an improved reproduction of annual variability is observed.  

The annual rainfall sites used for calibration of the HMM in Frost et al. (2002) were 

Caboolture, Cape Moreton and Brisbane (for Brisbane), and Blackheath, Sydney and 

Moss Vale (for Sydney). Although this choice of sites provided an improved 

reproduction of annual rainfall variability, it was not clear whether introduction of other 

sites into the HMM analysis would improve on those DRIP results. That is, the HMM 

sites were not chosen by any formal means. Reiterating one of the major motivations for 

this study, a method for choosing which sites to include in a HMM analysis had not yet 

been devised. 

Bayesian model selection in conjunction with the RHMM provides a formal method of 

choosing (averaging over) which sites should be included in a HMM region. This 

suggests that the RHMM posterior state series be used to condition the DRIP model. In 

Case Study II two model averaged RHMM state series from the Close and Far case 

studies of the previous chapter were used to condition DRIP at Brisbane and Sydney. 

The resulting reproduction of annual variability is then compared with that observed 

and with that of the previous HMM application.  

6.2 Model Description 

6.2.1 General Overview of DRIP 

DRIP simulates the inter-event time, storm duration, average event intensity and 

temporal distribution characteristics of point rainfall.  It can be used to simulate long 

sequences of rainfall events at time-scales down to 6 minutes. Figure 6.1 illustrates the 

key conceptualisation, a schematic of a time series of rectangular rainfall pulses or 

storm events characterised by three random variables: at , the inter-event time; dt , the 

storm duration; and i , the average rainfall intensity. The storm depth is defined as the 

product of i  and dt .  Monthly parameters are used to ensure seasonal variations are 

taken into account. 

As intra-storm rainfall is of interest in flood estimation, individual rectangular pulses 

are disaggregated using a dimensionless mass curve scheme similar to that employed by 
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Woolhiser and Osborn (1985) and Koutsoyiannis and Foufoula-Georgiou (1993). This 

scheme uses the gross characteristics of each rainfall event (td and i) to perform a 

conditional random walk through dimensionless mass curve space. This enables the 

temporal distribution within a storm to be simulated at short timescales of the order of 6 

minutes or less. 

 Inter-event time and storm duration distributions are described by a generalised 

exponential distribution with a combination of the Generalized Pareto (GP) and the 

power law kernel (Lambert and Kuczera, 1998).  The distribution of rainfall intensity is 

conditioned on the storm duration, and is described by the GP distribution whose mean 

and variance are described by a broken line function – see Heneker et al. (2001) for 

further details. 

Time
td ta

Average
Rainfall
Intensity
(mm/hr)

i

 

Figure 6.1 Drip model of precipitation events 

6.2.2 Incorporating Inter-annual Persistence into DRIP 

The RHMM averaged state time series described in the Chapter 5 gives the posterior 

probability of any rainfall year used in the calibration being in a dry (or wet) state. This 

probability time series is used to condition the DRIP rainfall model during calibration. 

The question is, how do we condition the DRIP model on this state series?  

It is beneficial when modelling rainfall to keep the model parsimonious or as simple as 

possible. Fewer parameters reduce calibration time and increase the chance of 

successful regionalisation of the model because misleading correlations between 

parameters are reduced. The two-state HMM provides a simple framework for 
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conditioning an event based rainfall model on inter- and intra-annual persistence. Intra-

annual persistence is enforced because the annual state, wet or dry, applies to all months 

in the water year. Inter-annual persistence arises when the HMM identifies a temporal 

Markovian structure within the annual data, producing consecutive years in a wet or dry 

state. Of course the HMM may degenerate to a mixture model, which would produce 

extra variability through the intra-annual persistence alone rather than through intra- and 

inter-annual persistence. Conversely, the model could be generalised further to allow 

more intra-annual variability by relaxing the assumption of a constant climate state 

throughout each year. 

In keeping with the goal of developing a parsimonious model it is hypothesised that 

only the number of storm arrivals per time period is modulated by the HMM. Thus, the 

two-state HMM is imposed only on those parameters affecting the number of storm 

arrivals i.e. inter-event time and storm duration. Storm temporal distribution and 

average rainfall intensity parameters are not adjusted. Accordingly, two separate sets of 

parameters are calibrated for the storm arrival parameters, one for years classified as dry 

and the other for years classified as wet. 

As we cannot be sure which state a particular historic year is in, the hidden state 

probability series produced by the HMM is used to estimate the probability of the 

historic year being in either a wet or dry state.  One possible way of using this series in 

the calibration of the DRIP model would be to classify each year as either wet or dry 

using some threshold value.  However, this approach is subjective and does not allow 

the full amount of information from the data to be utilised by both states. 

A more objective method is to weight event calibration data using the hidden state 

probability.  This weighting is undertaken on a generalised exponential distribution that 

takes the form: 

 ( ) ( )( )| , 1 exp , , 0 1,...,i t t i t t iP X x s g x s x i n≤ = − − > =� �   (6.1), 

where n  is the number of data points, X  is the independently distributed random 

variable describing either storm duration or inter-event time, t  is the time at the start of 

event X  and is expressed in years, t�  is a parameter vector dependent on t , st  is the 
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Markov state at time t , and  ( ), ,t tg x s�  is the exponential kernel function. t�  contains 

the parameter subvectors { },W D
t t� �  where W

t�  and D
t�  are those parameters relating to 

the wet and dry state respectively. Total probability is used to remove the dependence 

on the state in equation (6.1) yielding the probability density:  

 ( ) ( ) ( ) ( ) ( )| | |W D
t t t t tp x p x P s W p x P s D= = + =� � �  (6.2), 

where ( )tP s W=  denotes the hidden state probability given the year the event X  

occurred.  If there is a high probability of being in a wet state, the wet state parameters 

exert a greater influence on the random variable X  than do the dry state parameters, 

and vice versa for a low probability.   

The overall likelihood is, assuming independence of events, the product of the densities 

for all the data points given by: 

 
( ) ( )1

1

,..., |
n

n i t
i

p x x p x
=

= ∏ �  (6.3). 

The parameter sets t�  were estimated using the maximum likelihood optimisation 

techniques described in Lambert and Kuczera (1998).  

The maximum likelihood parameter estimation technique used here differs from the 

Bayesian parameter uncertainty model calibration techniques used in previous chapters. 

Although such a technique does not incorporate parameter uncertainty, maximum 

likelihood will give an indication of the best possible fit for the particular model used. If 

one model’s simulations do not correspond to the observed data well, it is an indication 

that the model hypothesis is not as justified compared to another that does. 

Incorporating parameter uncertainty into DRIP is beyond the scope of this study. As 

parameter uncertainty has not been incorporated here, use of BMS and model averaging 

between different DRIP specifications is not possible. Again, this is an intended 

direction of future research. 
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6.3 Data 
Pluviograph data in six-minute increments from three Australian capital cities (Sydney, 

Brisbane and Melbourne) were used by Heneker et al. (2001) to calibrate the model 

parameters. They found that simulated annual rainfall significantly underestimated the 

observed variability for Brisbane and Sydney. However, the Melbourne variability was 

reproduced satisfactorily. This result concurs with the work of Thyer and Kuczera 

(2000) which found that locations significantly influenced by tropical weather systems 

(Brisbane, Sydney) revealed an identifiable persistence structure. In the case of 

Melbourne, which is not influenced significantly by tropical weather systems, the data 

did not support the persistence assumptions used in the HMM. Therefore, this work will 

focus on validation against pluviograph data from the Brisbane and Sydney gauges. The 

length of the pluviograph data is from January 1913-November 1991 for Sydney, and 

January 1908-December 1991 for Brisbane as detailed in Table 5.1 in the previous 

chapter. 

The original HMM applied in Case Study I (from Frost et al., 2002) requires the input 

of annual rainfall totals from the region surrounding the pluviograph site. The use of 

multiple sites enables space-for-time substitution which should strengthen the 

identification of persistence (provided that the sites belong to the same persistence 

region). However, at the time this case study was undertaken, a rigorous rationale for 

choosing sites to be used in the HMM was yet to be devised. Accordingly, in that study, 

a heuristic approach was adopted in which a site is only added to the HMM if its 

posterior distribution of the transition probabilities was consistent with that of the 

already accepted sites. Of course, it is recognised that the requirement of similar 

transition probabilities does not guarantee individual site state series are coherent. Using 

this heuristic Sydney, Blackheath (63009) and Moss Vale gauges were selected for the 

Sydney multi-site analysis, whereas Brisbane, Caboolture and Cape Moreton were 

selected for the Brisbane analysis. The Mount Victoria/Blackheath composite of the 

previous chapter replaced the Blackheath record used here as it only had a length of 

1898-1993, reducing the overall length of annual rainfall series. The Caboolture record 

used in the Frost et al. (2002) study was shortened by four years (1888-1891) in the 

previous chapter as these years contained two completely missing rainfall months (April 

1890, November 1891). Such missing months could have considerable effect on the 
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RHMM, and hence were removed. However, their influence on the HMM is less 

pronounced, with the outlier effects outlined in the previous chapter not being possible. 

Therefore, the concatenated length of HMM annual rainfall series is 1898-1993 (May-

April water year) for Sydney, and 1888-1993 for Brisbane (April-March water year). 

The start of the rainfall year was chosen according to the SSI  index of Thyer (2001). 

The resulting state series for the HMM is shown in Figure 6.2a. 

The model averaged RHMM state series produced in the previous chapter and used in 

Case Study II are shown in Figure 6.2b and c, and correspond to the Close and Far site 

groupings respectively. 

Comparison of the HMM and RHMM state series reveals that the Brisbane Close 

RHMM state series is quite different to that of the original HMM, displaying a much 

greater degree of variability. It is interesting to note in Figure 6.2b and c that for some 

years the Sydney and Brisbane state HMM series are somewhat similar, suggesting that 

the same climate controls may be occurring over both regions. The Sydney Close 

RHMM series does show similarities to that of the HMM, however the 1940-1985 wet 

period is more pronounced in the RHMM series. The Brisbane and Sydney Far RHMM 

series show a greater degree of variability of state, with a proportionately higher amount 

of time in the wet state, and a greater degree of dithering around 0.5.  
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Figure 6.2 Posterior State Series probabilities for the (a) HMM used in Frost et al. (2002), and 

model averaged RHMM with fitted correlation for (b) Close  and (c) Far site groupings. 
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6.4 Case Study I : DRIP conditioned on HMM state series 
This section details the conditioning of the DRIP model on the posterior state series of 

the original HMM as discussed in Frost et al. (2002). The two HMM series shown in 

Figure 6.2a were used in the calibration of the DRIP model, weighting wet and dry 

storm duration and inter-storm duration parameters according to this series. The two 

state DRIP model is validated by comparison with observed annual rainfall and the 

simulations produced by the single state DRIP specification. Other short timescale 

statistics important in design (IFD, hourly/daily probability of no rain, hourly/daily 

mean/variance) are also checked against that observed.    

6.4.1 Results 

Annual Rainfall 

A comparison between simulated annual rainfall for Brisbane and Sydney using a two-

state versus a single-state model is shown in Table 6.1. When comparing observed and 

simulated statistics it is important to quantify the sampling uncertainty in the statistic. 

Accordingly, 90% confidence limits are reported as well as the simulated median value 

of the statistic, which were calculated by ranking 1000 replicated simulations each 

having the same length as the observed record. If the observed values lie between the 

upper and lower confidence limits, then the model is not inconsistent with the observed 

data. Note however, because the model has not been calibrated to the validation 

statistics, the median values do not necessarily have to follow the data. Table 6.1 shows 

that the observed mean is reproduced well by both models. However, the two-state 

model provides a marked improvement in reproducing the annual standard deviation. Of 

the statistics presented within Table 6.1, the auto correlation is least well produced by 

the two state models, with the observed value lying just within the upper 90% 

confidence limit for both Sydney and Brisbane. This could be attributed to sampling 

variability, that is, this has just occurred by chance. Alternatively, the two-state DRIP 

model may be inducing too much auto-correlation from one year to the next.  
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Table 6.1 Simulated and Observed Annual Mean, Standard Deviation and Auto correlation with 

90% confidence limit for Sydney 1859-1998 and Brisbane 1887-1993. 

Sydney Brisbane  

 

 

Mean (mm) Standard 
Deviation (mm) 

Auto 
correlation Mean (mm) Standard 

Deviation (mm) 
Auto 

correlation 

Observed 1221.7 332.0 0.10 1125.4 350.7 0.05 

1265.3 285.7 0.13 1134.0 288.3 0.16 Single State 
Simulated 1228.2 

1191.6
259.5 

233.0 
0.00 

-0.15 
1091.2

1051.1 
251.3 

222.3 
-0.01 

-0.16 

1311.3 393.5 0.45 1204.0 378.6 0.40 Two State 
Simulated 1232.0 

1163.0
335.0 

282.2 
0.30 

0.10 
1125.0

1052.0 
313.4 

258.0 
0.22 

0.03 

Observed annual rainfall distributions for Sydney and Brisbane are compared to those 

produced by the DRIP single and two-state simulation in Figure 6.3 and Figure 6.4. For 

both sites, incorporating two-state simulation provides a marked improvement to the 

single state distributions. The Sydney (two-state) expected simulation closely matches 

the observed values for most of the distribution with some suggestion of overprediction 

of low rainfalls. Likewise, the Brisbane (two-state) simulation reproduces the 

distribution for the majority of the curve except for the lower extremity where the 

observed rainfall lies just below the 90% confidence limit. The problems with the low 

rainfall may be due to misclassification of an actual wet year as a dry year. Alternatively 

the hypothesis that only the distributions of inter-event and storm duration are affected 

by climate state may need to be reconsidered.  
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Figure 6.3  Observed Annual Rainfall versus 1000 Replicated Simulations; Sydney Observed 1859-

1998 vs. 140yr Repeated Simulation for (a) Single State DRIP and (b) Two State DRIP 
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Figure 6.4  Observed Annual Rainfall versus 1000 Replicated Simulations; Brisbane Observed 

1887-1993 vs. 107yr Repeated Simulation for (a) Single State DRIP and (b) Two State DRIP 

IFD Curves 

Comparison of observed and simulated Intensity-Frequency-Duration curves provides a 

thorough test of the model’s ability to simulate the temporal nature of rainfall.  As 

yearly extremes of short-duration rainfall are not calibrated within DRIP, accurate 

representation of extreme distributions adds credence to the model’s usefulness in 

design.  Observed and simulated (two-state) curves are shown in Figure 6.5.  As can be 

seen, with the exception of the Sydney 72 hour IFD curve, the simulated results 

correspond very well with the observed values.   

Aggregated Rainfall Statistics and Probability of No Rain 

Other general statistics such as daily and hourly rainfall mean and standard deviation 

need to be well reproduced if the model is to be considered robust. Also, the probability 

of no rainfall over different timescales gives an indication of the validity of the model 

conceptualisation. The ability of the model to account for seasonality can be tested by 

comparing these statistics on a monthly basis. Hourly and daily aggregated rainfall 

statistics are shown in Figure 6.6 and Figure 6.7 respectively. The simulated versus 

observed probability of no rain is shown in Figure 6.8. The simulated values 

satisfactorily reproduce all of the statistics. The simulated probability of no rain is 

slightly lower than that observed for all the months shown. It is hypothesised here that 

the observed dry probability statistic is biased upwards due to missing values being 

predominantly wet. The seasonal variation for each observed statistic is matched closely 

by the majority of simulated values. 
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Figure 6.5   Observed and Simulated IFD Curves for 1hr, 12hr and 72hr duration at sites (a) 

Sydney and (b) Brisbane 
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Figure 6.6   Observed and Simulated Hourly Rainfall Mean and Standard Deviation for (a) Sydney 

and (b) Brisbane 
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Figure 6.7   Observed and Simulated Daily Rainfall Mean and Standard Deviation for (a) Sydney 

and (b) Brisbane 
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Figure 6.8 Observed and Simulated Hourly and Daily Dry Probabilities for (a) Sydney and (b) 

Brisbane 

6.4.2 Discussion of HMM case study 

The incorporation of a two-state HMM in the event-based rainfall model DRIP has 

enabled an improved reproduction of the annual rainfall distribution. This improvement 

is attributed to the ability of the HMM to conceptually incorporate the intra- and inter-

annual persistence apparent in Australian rainfall. The HMM was applied only to those 

processes within DRIP that influence the number of storm arrivals, namely storm and 

inter-storm duration. The credibility of the model was tested by comparison of 

simulated and observed values of IFD curves, monthly aggregated rainfall statistics and 

the probability of no rain. Simulated values are shown to correspond well with observed 

values and also show general improvement when compared to single state DRIP.  

Of the annual statistics tested, the two-state DRIP model auto-correlation appears to be 

over inflated. An approach to reduce this auto-correlation, whilst also modelling inter-

annual persistence, would be to allow the state to vary within the water year also. That 

is, there is a Hidden Markov monthly state given the overlying annual Hidden Markov 

state, relaxing the rigidity of the intra-annual persistence structure of the current two-

state DRIP-HMM. Such a model would allow a greater degree of flexibility in 

reproducing variability, yet would not force the degree of dependence from one year to 

the next to produce this variability. 



182 

 Chapter 6 – Application of HMM to DRIP 

6.5 Case Study II : DRIP conditioned on model averaged RHMM 

state series 

This section examines the conditioning of the DRIP model on the model averaged 

posterior state series of the fitted correlation RHMM presented in the previous chapter.  

6.5.1 Results: Fitted Correlation RHMM-DRIP 

The two sets of RHMM (Close and Far) series, shown in Figure 6.2b and c, were used 

in the calibration of the DRIP model, weighting wet and dry storm duration and inter-

storm duration parameters. The two state DRIP model is validated by comparison with 

observed annual rainfall and the simulations produced by the single state DRIP 

specification. Short-scale statistics produced were similar to those observed for Case 

Study I. However, they are not presented here because reproducing the variability of 

annual rainfall is the main focus of this section.  

Observed annual rainfall distributions for Sydney and Brisbane are compared to those 

produced by the DRIP single and two-state simulation in Figure 6.9a, b and c. There are 

two sets of two-state results (Figure 6.9b and c) pertaining to the Close and Far 

grouping of sites respectively. The annual summary statistics of the DRIP simulations 

are also presented within Table 6.2.  

For the Sydney annual distributions, an improved reproduction of observed data is 

produced using the Sydney Far state series, with the observed values predominantly 

lying on the simulated median line. However, the Sydney Close results do not 

significantly improve upon those of the single state calibration, underestimating the 

variability of the annual rainfall. The RHMM Brisbane Close simulation shows a 

significantly higher degree of variance (greater slope) than the single state simulation, 

yet the overall variance remains underestimated. The Brisbane Far simulation on the 

other hand does not significantly improve upon the annual distribution of the single 

state model, again underestimating the overall variance. The annual summary statistics 

shown in Table 6.2 reflect these results, with the median standard deviation consistently 

underestimating that observed for all simulations. The auto correlation statistic, for the 

simulations which showed the greatest variance (Sydney Far and Brisbane Close) were 



183 

 Chapter 6 – Application of HMM to DRIP 

within acceptable bounds. This contrasts the HMM results where the autocorrelation 

was high compared to that observed. 
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Figure 6.9 Observed Annual Rainfall versus 1000 Replicated Simulations; Sydney Observed 1859-

1998 vs. 140yr Repeated Simulation, Brisbane Observed 1860-1993 vs. 134yr Repeated Simulation 

for (a) Single State DRIP and (b) RHMM-DRIP Close sites and (c) RHMM-DRIP Far sites. RHMM 

uses fitted correlation. 
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Table 6.2 Simulated and Observed Annual Mean, Standard Deviation and Auto correlation with 

90% confidence limit for Sydney 1859-1998 and Brisbane 1860-1993. 

Sydney Brisbane  

 

 

Mean (mm) 
Standard 
Deviation 

(mm) 

Auto 
correlation Mean (mm) 

Standard 
Deviation 

(mm) 

Auto 
correlation

Observed 1221.7 332.0 0.10 1154.2 371.0 0.06 

1273.5 297.1 0.17 1172.1 346.9 0.25 Two State   
Close 1229.1 

1186.1 
268.4 

241.8 
0.03 

-0.11 
1119.2 

1069.0 
306.0 

273.9 
0.11 

-0.03 

1286.2 350.2 0.31 1141.7 337.5 0.34 Two State   
Far 1228.6 

1177.2 
315.0 

285.9 
0.17 

0.03 
1084.0 

1031.8 
292.6 

256.9 
0.19 

0.03 

6.5.2 Discussion: Fitted Correlation RHMM-DRIP 

How can these contrasting results be explained? That is, why does the Sydney Far state 

series enable a better fit of DRIP simulations to the annual data than Sydney Close data 

(and vice versa for Brisbane)? Also, why does the single region HMM of Case Study I 

reproduce the variance of Sydney to a greater degree of that of the Sydney Far 

calibration, yet have markedly different state series? 

The better reproduction of the autocorrelation by the Sydney Far and Brisbane Close 

simulations compared to the single region HMM is attributed to the more variable state 

series for the RHMM. The HMM state series shows a high degree of persistence, 

whereas the RHMM generally shows more frequent switching between states. This 

results in a lower degree of autocorrelation. 

The general underestimation of the variance by all simulations presented can in part be 

attributed to the non-stationary nature of annual rainfall. That is, the simulations 

presented were based on calibration of the RHMM to records of shorter length than 

those presented in Table 6.2. Likewise, the length of the pluviograph records used for 

DRIP calibration were significantly shorter than the annual records used for 

comparison. The variance of annual rainfall over this longer period is greater than that 

over the length of the DRIP record. However, it was considered that using the entire 

annual records for comparison was a stronger test for the DRIP-RHMM model, cross-

validating using data not used in calibration.  
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In view of the Sydney single region HMM and Sydney Far RHMM results, there 

obviously is more than one way to produce the variance observed in the annual rainfall. 

Providing that lower mean rainfall within the pluviograph record coincides with dry 

RHMM years, and higher mean rainfall coincides with wet RHMM years, a greater 

degree of variability will be produced by the two state DRIP model. However, it is not 

clear which of the two methods, using model averaged RHMM or HMM state series is 

superior; this is a question of hypothesis testing (or model selection).  

Central to the choice of model for conditioning DRIP is the misclassification of wet and 

dry years. If the state series misclassifies events, especially large events on the tails of 

the inter-storm and storm distributions, this will bias the means of the DRIP dry and wet 

distributions towards one another, thus producing less variability. As the means move 

closer to each other, the distribution becomes more like that of the single state model. 

As the RHMM uses a ‘hidden’ state series to produce the variability present in annual 

rainfall, it is not clear upon examination whether the state series produced from 

calibration is appropriate to condition the calibration of DRIP. Other empirical 

relationships observed must be used to check the classification. The El Niño Southern 

Oscillation (ENSO) has been identified as having influence on Australian rainfall and 

runoff (Ropelewski and Halpert, 1996) – with El Niño years generally being correlated 

with low rainfall years, and high rainfall in La Niña years for this area (Kiem and 

Franks, 2001b,, 2001a). Misclassification is now examined in terms of ENSO, 

comparing the state series of the RHMM versus the ENSO classification. A state series, 

classifying years into either El Niño, Neutral and La Niña years is shown in Figure 6.10. 

The state series spanning 1950-2001 was derived from the six month (October-March) 

average values of the MEI as described in Kiem and Franks (2001b). The 1900-1949 

classifications were based on the six month (October-March) average values of the 

Nino3 indicator also described in Kiem and Franks (2001b). These classifications were 

used to stratify the pluviograph data over the May-April water year (as used for the 

HMM and RHMM calibration), and calculate average dry spell duration, storm duration 

and intensity for the El Niño, Neutral and La Niña periods. Likewise, the RHMM state 

series used in this section was used to calculate average wet and dry event durations and 

intensities. The resulting average event properties are presented in Table 6.3. 
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Comparing the Sydney Close state series to the HMM and Sydney Far RHMM, Sydney 

Close shows a lot less variability of state (lower transition probabilities) than that of the 

HMM or Sydney Far. Conversely, the Brisbane Close series shows greater variability 

than both the single region HMM and the Brisbane Close RHMM series. Of the state 

series, Brisbane Close resembles the ENSO series the closest, with Sydney Far also 

showing a similar degree of variability. Given that significant El Niño’s occurred in 

1977, 1979 and 1982, we would expect there to be considerably lower rainfalls during 

these years. In turn, a state series indicating a high probability of being in the dry state 

would be expected. This is the case for the HMM and Sydney Far state series, however 

the Sydney Close state series is predominantly wet during this period, not venturing 

much below the 0.5 mark.  
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Figure 6.10 ENSO classified years according to Nino3 (1900-1949) and MEI (1950-2000) in Kiem 

and Franks (2001b) 
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Table 6.3 Sydney and Brisbane average storm event data stratified into El Niño/La Niña and 

RHMM wet and dry years. 

Site  Dryspell 
Duration 

Storm 
Duration 

Storm 
Intensity 

Entire record 45.00 4.10 1.71 

El Niño years 49.40 4.03 1.74 

Neutral years 45.28 4.06 1.71 

La Niña years 41.61 4.22 1.69 

Dry 46.04 4.11 1.61 Close 
RHMM Wet 43.85 4.10 1.84 

Dry 47.73 3.99 1.64 

Sydney 

Far 
RHMM Wet 42.45 4.20 1.78 

Entire record 53.58 3.44 2.41 

El Niño years 60.92 3.11 2.40 

Neutral years 53.71 3.49 2.42 

La Niña years 48.52 3.58 2.38 

Dry 55.08 3.32 2.44 Close 
RHMM Wet 51.65 3.59 2.37 

Dry 55.70 3.42 2.42 

Brisbane 

Far 
RHMM Wet 50.60 3.45 2.40 

It appears the Sydney Close state series is misclassifying data in strong El Niño years, 

which is in turn reducing the variability produced from the DRIP simulation. The other 

two series (HMM Sydney and RHMM Sydney Far), having classified these major years 

correctly are more likely to have more variable annual distributions. Although the state 

series for HMM Sydney and RHMM Sydney Far are quite different, these two series are 

presumably coinciding in appropriate years (large wet or dry events). The remaining 

years which do not coincide must not have significant influence on the DRIP mean.  

The average event properties of the ENSO and RHMM classified data are examined in 

Table 6.3. Comparing the average dryspell duration for El Niño and La Niña years, the 

dryspell is longer for El Niño years, for both Sydney and Brisbane. The storm duration 

is shorter in El Niño years, whilst storm intensity is marginally greater. The RHMM 

weighted dry/wet storm durations show similar trend to the El Niño/La Niña, with 

longer dryspells for the dry state. The dry/wet storm durations also show similar trends 
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to the ENSO classified data, with Sydney Far and Brisbane Close producing wet storm 

durations on average of greater length than the dry storm durations. The exceptions lie 

with Sydney Close and Brisbane Far, the sites showing poorest reproduction of annual 

variability, with similar average storm durations for wet and dry years. The wet/dry 

average storm intensities show little variability between wet and dry years and ENSO 

states across all site calibrations, with Sydney intensities being slightly greater for wet 

years, whilst being slightly less for the Brisbane RHMM. The significance of the 

average dryspell and storm duration changes can be considered by noting that the 

average number of storms per year is defined as:  

 24*365
/

( ) ( )
Averageno storms year

Mean dryspell Mean stormduration
=

+
  (6.4). 

Due to the relative size of the dryspell compared to the storm duration, changes in the 

dryspell have a greater influence over the number of storms in a year. If the dryspell 

rose with El Niño while the storm duration dropped by the same magnitude, the same 

number of storms in the year would result. This is not the case here, with the El Niño/ 

La Niña average number of storms being 164/191 for Sydney and 137/168 for Brisbane. 

Thus La Niña years have 17% and 23% more storms on average per year than in El 

Niño years.  

The lack of separation of Sydney Close and Brisbane Far average wet and dry storm 

duration data is prima facie evidence that these series have a higher degree of 

misclassification compared to the other site groupings. Of course, there is no such thing 

as the correct state series, as the RHMM is just a stochastic conceptualisation of reality. 

Likewise, the ENSO state series is just an empirically observed phenomenon, not 

necessarily reflecting the correct state series. However, empirical relationships such as 

the ENSO phenomenon are useful in identifying shortcomings within the RHMM.  

The apparent misclassification of El Niño/La Niña rainfall event data demonstrates two 

points. Firstly, if the pluviograph data is misclassified into a wet year, when there are 

extreme dry events occurring, the DRIP simulation will be constrained in reproducing 

variability as was possible if otherwise classified. Secondly, climate indices such as the 

MEI used in Kiem and Franks (2001a) are useful in checking for misclassification 

within the state series of the HMM and its variants. This checking allowed clear 
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identification of periods in the state series which may not be consistent with the known 

influence of ENSO. 

This comparison against data stratified into El Niño/Neutral/La Niña years raises the 

possibility of calibrating DRIP using a two state El Niño/La Niña or three state El 

Niño/Neutral/La Niña model. This removes the need to calibrate the RHMM model. 

However, determination of which sites should be conditioned using this (ENSO state 

series) returns us to the motivating reason for using the RHMM – how do we choose 

sites to be grouped into homogenous climate regions? Rather than using the ENSO 

series as a replacement for RHMM, it is recommended that the ENSO series is 

incorporated into RHMM calibration so that regions where ENSO effects are 

identifiable can be identified formally according to BMS.  

6.5.3 Results: Exponential Correlation Decay RHMM-DRIP 

To demonstrate further the influence of differing state series on the calibration of DRIP, 

two-state DRIP is now calibrated using the model averaged state series of the 

exponential correlation decay RHMM. The state series for the Close and Far site 

groupings are shown in Figure 6.11a and b respectively. 

Although in preliminary testing of this model the exponential decay correlation 

structure produced greater marginal likelihoods than that of the fitted correlation model, 

the state series produced were affected by anomalous behaviour related to the complex 

correlation structure. Some site groupings (especially Brisbane Close) produced state 

series that were not in keeping with the intended hierarchical structure of the RHMM. 

The model averaged state series, with the exception of Brisbane Far, show a much 

greater degree of variability than the fitted correlation RHMM series, with Brisbane 

Close and Sydney Far resembling oscillating noise about the 0.5 probability line. 

Observed annual rainfall distributions for Sydney and Brisbane are compared to those 

produced by the DRIP two-state simulation for Close and Far site groupings in Figure 

6.12a and b. The annual summary statistics of the DRIP simulations are also presented 

within Table 6.4. 

The Brisbane simulations do not produce annual rainfall distributions significantly 

different from that of single state DRIP – with the variance underestimated. Conversely, 
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both Sydney simulations produce annual rainfall distribution with a variance (and mean) 

that is much greater than that observed, with the right hand tail showing significantly 

larger rainfall years. 

6.5.4 Discussion: Exponential correlation decay RHMM-DRIP 

Apparently, the Sydney DRIP calibrations have overcompensated for the variability 

within the annual rainfall record, with Sydney Close showing the greatest degree of 

over dispersion. The state series used here allows a greater degree of separation of DRIP 

parameters (and hence wet and dry means), perhaps indicating that the pluviograph data 

is more appropriately classified. Although the data may be more appropriately 

classified, it is not clear whether this state series should be used in calibration when 

other state series produce simulated annual rainfall distributions much closer to that 

observed.  Again this is a question of hypothesis testing/model selection, which was not 

undertaken here as the DRIP model had not yet incorporated the Bayesian parameter 

uncertainty framework to apply BMS. These comments regarding hypothesis testing are 

equally applicable for Brisbane, where the use of the two-state series in calibration does 

not show any significant increase in quality of reproduction of annual variance. 
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Figure 6.11 Posterior State Series probabilities for the model averaged RHMM with exponential 

correlation decay for (a) Close  and (b) Far site groupings. 
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Figure 6.12 Observed Annual Rainfall versus 1000 Replicated Simulations; Sydney Observed 1859-

1998 vs. 140yr Repeated Simulation, Brisbane Observed 1860-1993 vs. 134yr Repeated Simulation 

for exponential correlation decay RHMM-DRIP  (a) Close sites and (b) RHMM-DRIP Far sites.  

 

Table 6.4 Exponential Decay Simulated and Observed Annual Mean, Standard Deviation and Auto 

correlation with 90% confidence limit for Sydney 1859-1998 and Brisbane 1860-1993. 

Sydney Brisbane  

 

 

Mean (mm) 
Standard 
Deviation 

(mm) 

Auto 
correlation Mean (mm) 

Standard 
Deviation 

(mm) 

Auto 
correlation 

Observed 1221.7 332.0 0.10 1154.2 371.0 0.06 

1386.0 481.5 0.47 1142.7 315.6 0.17 Two State   
Close 1294.4 

1205.3 
442.4 

400.6 
0.37 

0.26 
1101.3 

1058.0 
280.3 

248.4 
0.03 

-0.11 

1355.3 427.2 0.32 1141.9 325.8 0.31 Two State   
Far 1292.0 

1223.0 
388.0 

348.4 
0.19 

0.05 
1082.8 

1028.4 
286.8 

250.1 
0.16 

0.02 

A possible reason for the exponential decay RHMM for Sydney producing 

overdispersed annual rainfall simulations, is that the two-state assumption for both the 
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storm duration and inter-storm time is not justified. That is, the two-state assumption 

may be justified for only the storm duration or only the inter-storm duration. A 

simulation presenting the Sydney Close DRIP-RHMM calibration, with single state 

storm duration and two-state inter-storm time is given in Figure 6.13.  

The single state storm duration and two-state inter-storm time simulation reproduces the 

annual rainfall distribution accurately. This may indicate that the two-state assumption 

is justified only for the inter-storm duration, and not the storm duration. Once again, 

whether or not this is the case is a question of model selection. This requires parameter 

uncertainty being incorporated into the DRIP model so as to allow determination of the 

model weights according to BMS. 
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Figure 6.13 Observed Annual Rainfall versus 1000 Replicated Simulations; Sydney Observed 1859-

1998 vs. 140yr Repeated Simulation for RHMM-DRIP Close sites with two state inter-storm 

duration only. 

6.6 Discussion of case studies 

The case studies demonstrate two major points: 

1. Misclassification of major pluviograph events (on the tail of the associated 

distributions) into wet or dry years can reduce the amount of variability produced by 

the two-state DRIP simulation. As the DRIP calibration is currently independent of 

the calibration of the hidden state series, state series inconsistent with the 

pluviograph event data can result. 
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2. Whether or not DRIP should include two-state/single state, inter-storm 

durations/storm durations/intensity distributions is a question of hypothesis testing. 

Currently the DRIP calibration framework does not allow formal model comparison 

(through BMS). 

An approach which would reduce the amount of pluviograph data misclassified 

according to state series would be to calibrate the HMM (or RHMM) concurrently with 

the DRIP model. This would ensure that the state series is consistent with both the 

annual rainfall used previously in the HMM calibration, and also the pluviograph data 

used for DRIP.  

Although beyond the scope of this thesis the joint calibration of DRIP and HMM is 

described below. The likelihood (demonstrated here for the HMM) calculation is 

generalised from Section 3.4.1 to include the rainfall event data ( )1,..., t=X x x  where tx  

is the collection of event data for a particular year t . This possibly empty subvector 

( ) ( )( ),...,t a t b tx x=x  contains data points ( )a t  to ( )b t , where ( )a ⋅  and ( )b ⋅  are indexes for 

the first and last data point in each year. A typical likelihood term, analogous to (3.12) 

for the original HMM (with ty , the annual rainfall, and tx  both being considered data) 

is: 
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(6.5), 

where HMM�  and DRIP�  are the HMM and DRIP parameters respectively. The final line 

assumes independence of the annual rainfall data ty  and the rainfall event data tx  given 

the regional state. This independence assumption may require modification as annual 

rainfall data has dependence on pluviograph data measured nearby (given that annual 

data can be considered accumulated pluviograph data). It is a question of whether the 

regional state explains this dependency sufficiently. The final line is equivalent to the 
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weighting undertaken in (6.2) with the addition of the annual data. The remainder of the 

likelihood calculation (revolving around the transition probabilities) remains the same, 

with analogous calculations to (3.11) and (3.13) used. The annual rainfall distribution 

( )| ,t t DRIPp ry �  could be modelled as a Gaussian distribution, as was done for the 

HMM, however differing in that the annual mean and variance parameters are inferred 

from DRIP simulation i.e. ( ) ( ) ( )( )| , ; , , ,t t DRIP t t DRIP t DRIPp r N y r rµ σy � � �� . Here the 

mean µ  and standard deviation σ  can be estimated from a suitably long DRIP 

simulation given the parameters DRIP�  and state tr . Alternatively, nonparametric 

estimation of ( )| ,t t DRIPp ry �  from DRIP simulation would obviate the need for an 

annual rainfall Gaussian distribution assumption. 

Returning to the subject of hypothesis testing, incorporating a parameter uncertainty 

framework (applying priors to all model parameters such that the posterior is proper and 

identifiable), and using the techniques of BMS and model averaging, would allow 

formal testing of the various DRIP model hypotheses. This method, in tandem with the 

joint HMM-DRIP calibration technique mentioned above would thus allow the most 

appropriate state series to be grouped with the most appropriate DRIP model, 

considering both the pluviograph and annual data. 

Has the conditioning of DRIP on the hidden state of the HMM (or its variants) produced 

a model which improves reproduction of the observed inter-annual variability? The 

increased variability observed in the case studies compared to the single state DRIP 

would tend to indicate so. Whether or not this is adequate, or would better be modelled 

using some other hypothesis, is question to be addressed by future research when formal 

model and parameter uncertainty is incorporated into the DRIP calibration framework. 

Finally, it is noted that the conditional weighting of an event based model using the 

output series of a HMM (or its variants) can be used for any event based model which 

uses likelihood based inference. 

6.7 Conclusion 
This chapter has demonstrated the conditioning of the event based rainfall model DRIP 

on the hidden state series of the original two-state HMM of Thyer (2001) and model 
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averaged hidden state series of the RHMM presented in Chapter 5. Both of these case 

studies were based on pluviograph data collected at Sydney and Brisbane. 

The first case study (using the hidden state series of the HMM) demonstrated an 

improved reproduction of the annual rainfall distribution. This improvement is 

attributed to the ability of the HMM to conceptually incorporate the intra- and inter-

annual persistence apparent in Australian rainfall. The HMM was applied only to those 

processes within DRIP that influence the number of storm arrivals, namely storm and 

inter-storm duration. The credibility of the model was tested by comparison of 

simulated and observed values of IFD curves, monthly aggregated rainfall statistics and 

the probability of no rain. Simulated values were shown to correspond well with 

observed values and also showed general improvement when compared to single state 

DRIP. Nonetheless, the lack of a formal method for selecting sites in the HMM resulted 

in a heuristic approach which required all sites to have similar transition probabilities 

but could not guarantee individual state series were coherent. 

The second case used a model averaged RHMM state series derived independently of 

the DRIP model. It was found that the annual distribution produced by the two-state 

DRIP model showed some sensitivity to the choice of state series with under or 

overestimation of annual variability resulting. These differences were attributed to 

possible misclassification of pluviograph data into inappropriate wet or dry years. In 

some cases the variability produced by the two-state DRIP model was greater than that 

observed on the annual rainfall records, suggesting that the hypothesis of two-state 

storm durations and inter-storm durations can be questioned. 

It is recommended that to avoid misclassification of DRIP events a joint RHMM-DRIP 

calibration be undertaken, thus allowing the DRIP data to have an influence on the 

hidden state series produced. Also, as parameter uncertainty has not been incorporated 

in DRIP calibration so far, model selection using BMS has not been possible. Applying 

BMS to the joint RHMM-DRIP model would thus identify state series that are more 

consistent with the pluviograph data and enable formal model comparison of DRIP 

variants conditional on the resultant state series.  
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Chapter 7 Conclusions 

7.1 Introduction 
This thesis has presented new approaches to stochastically modelling long-term 

persistence in rainfall at multiple sites. A feature of these approaches is that they allow 

for spatially non-homogenous conceptual climate effects. In addition this thesis has 

considered the problem of downscaling long-term persistence to short timescale 

stochastic rainfall models. The analyses were conducted using a Bayesian framework to 

explicitly account for parameter uncertainty and select between competing hypotheses.  

This chapter summarises the principal findings of this thesis and examines future 

research directions. 

7.2 Summary 

7.2.1 Objectives 

The main objective of this thesis was to address the spatially varying long-term effects 

of climate on rainfall over a range of timescales ranging from sub-hourly to multi-year. 

Chapter 2 reviewed previously published methods of incorporating long-term 

persistence within stochastic rainfall models. The reviewed models differ from one 

another in the degree to which data is conditioned on previously occurring data. Some 

models directly relate current rainfall to rainfall in preceding timesteps (e.g. AR1). 

Other models use latent states (as a conceptual climate state), with the rainfall being 

considered a degraded observation of this state. The degree of persistence identified by 

these models depends on the lag of the dependence permitted by the modelling 

structure. Of these methods, few specifically address long-term persistence, with the 

majority focussing on day-to-day and seasonal non-stationarity. Of the models that do 

consider long-term persistence, non-homogeneity of the conceptual climate influence is 

rarely accounted for. 

The hidden Markov model (HMM) introduced by Thyer (2001) for modelling annual 

rainfall was used to identify long-term persistence within Australian 

hydroclimatological series. This HMM generally requires multiple site rainfall input if 

the state series is to be identified given the relatively short length of annual rainfall 
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records ( 100<  years). However, a formal method of choosing sites to be included in a 

HMM analysis had not been devised prior to this study. Hence, developing such a 

method by generalising the HMM was a major objective of this study.  

7.2.2 HMM generalisations: Switch HMM and Regional HMM 

This thesis extends the previous work of Thyer (2001) who applied a multi-site HMM to 

model annual rainfall within Australia. This work differs from that of Thyer (2001) in 

that the generalisations introduced do not assume the same climate state at each site. 

The Switch HMM allows at-site anomalous states, whilst still maintaining a regional 

control. The Regional HMM, on the other hand, allows sites to be partitioned into 

different Markovian state regions. Chapter 4 provided a detailed discussion of these 

HMM generalisations, including derivation of likelihood functions for use in Bayesian 

analysis. The extent to which these new models capture the non-homogenous nature of 

inter-annual persistence is of primary interest in this thesis.   

7.2.3 Bayesian modelling framework and model selection 

Chapter 3 outlined the Bayesian framework that was used throughout this thesis. This 

framework was employed because it rigorously deals with parameter uncertainty when 

making inferences and evaluating competing hypotheses. Moreover, Bayesian model 

averaging provides a rational means for allowing for model and parameter uncertainty 

when making inferences. This model uncertainty framework was discussed in detail as 

it has rarely been used in hydrological studies. 

An MCMC sampling technique, the random walk Metropolis-Hastings (MH) sampler 

was introduced and compared to the Gibbs sampler, the model calibration technique 

used in the study of Thyer (2001). The MH sampler was chosen in this study due to its 

comparative simplicity. Use of the MH sampler obviated the need to simulate the 

hidden state series as part of the sampling process, thus reducing the chance of 

occurrence of ‘trapping states’ encountered with the Gibbs sampler for HMM problems. 

The simplification arose because the MH sampler could employ the Baum-Welch 

likelihood formulation for the HMM which integrated out the hidden state. 

A test study demonstrated some of the perils involved in Bayesian model selection 

(BMS), along with comparisons to other widely used model selection methods. 
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Significantly, in cases where there are little data and/or highly dissimilar models, the 

Schwarz criterion (or Bayesian information criterion) can yield a poor approximation to 

the Bayes Factor. Methods for estimating Bayes factors using MCMC posterior samples 

were investigated. It was concluded that the Gelfand-Dey estimator provided the most 

reliable estimate of marginal likelihood. 

Bayesian model averaging, the extension of Bayesian principles to model space, was 

discussed. This method was preferred over model selection as it removed the need to 

select particular models according to some (usually ad hoc) criteria. This model 

averaging technique was used for comparison of the HMM and its generalisations. 

7.2.4 Spatial dependency and the HMM variants 

Spatial dependency was incorporated into the HMM variants through two mechanisms: 

large-scale distance-independent correlation induced by a regional climate state and 

small-scale distance-dependent correlation preserved by the multivariate normal rainfall 

distributions. Several parameterisations of the small-scale Gaussian correlation were 

proposed for testing, namely Fitted Correlation, Exponential Decay Correlation, 

Empirical and Zero Correlation. The Fitted Correlation parameterisation was the most 

flexible because it treated the correlation coefficients as completely unknown and 

therefore required fitting individual site-to-site correlations. This parameterisation was 

chosen for use in the majority of the case studies.  

7.2.5 Switch HMM and Regional HMM case studies 

Chapter 5 reported on the application of the HMM, SHMM and RHMM to four 

groupings of four sites located on the Eastern coast of Australia. These groupings were 

denoted Close and Far (with the Close sites being within 200km of the key site), with 

either Sydney or Brisbane as the key site. The SHMM and RHMM both identified state 

series significantly different from the HMM series, with each providing different 

mechanisms for individual sites to vary from the HMM regional controlling state. In 

one case study (Sydney Far), a SHMM variant was selected as the most likely model (as 

opposed to the HMM or RHMM). In the remaining case studies (Brisbane Close and 

Far, Sydney Close) the RHMM variants showed greatest posterior weight, indicating 

that the data favoured the multiple region RHMM over the single region HMM or the 

SHMM variants. In no cases (except the zero small-scale correlation Brisbane Close 
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test) did the HMM produce the maximum marginal likelihood when compared to the 

SHMM and RHMM.   

Given that the HMM generalisations produced variants with significantly greater 

posterior weight than the HMM, it is believed that the generalisations are justified. Of 

course, further evaluation of the models is suggested on more sites, in different areas. 

What has been demonstrated here is that the SHMM and RHMM provide a means of 

determining which sites should be included in a HMM analysis. It should be noted that 

the BMS model averaging technique removes the need to choose which sites are 

included, weighting the models according to their posterior weight.  

Generally, the RHMM variants produced models with greater marginal likelihood than 

the SHMM variants, indicating the RHMM allowed more flexibility to reproduce the 

variability within the data. As such, the RHMM model averaged state series was used to 

condition the event based rainfall model DRIP. 

7.2.6 Small-scale correlation structures: the influence of outliers 

The Fitted Correlation case study involving the Brisbane Close group of sites produced 

some unusual results for the SHMM and RHMM calibrations. Even though Cape 

Moreton is situated closely to Caboolture and Brisbane, the model averaged state series 

of the RHMM indicated that Cape Moreton consistently identified a wet state series, 

generally being in the opposite state of Brisbane and Caboolture. The SHMM Cape 

Moreton state series contradicted this, following the Brisbane state series reasonably 

closely. Given that these sites are close to one another, we would expect the probability 

of being under the same climate influence to be high.  

Given that there is a relationship between the number of sites grouped in each RHMM 

region (large-scale variation) and the correlation structure used (small-scale variation), 

several different ways of modelling the small-scale correlation were tested. This testing 

had a dual motivation: Firstly to identify a reason for the anomalous behaviour of the 

Cape Moreton state series; and secondly to produce insight to guide future work for 

dealing with small-scale correlation structure - specifically, to determine whether the 

Exponential Decay correlation structure is flexible enough to compete with the Fitted 

Correlation structure.  
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Relationships identified in Section 5.5 between the correlation and variance parameters 

demonstrated three major points. Firstly, fitting correlations rather than applying an 

empirically estimated value provides more flexibility in reproduction of observed data, 

allowing accommodation of outliers to a greater degree. Secondly, if a functional 

correlation structure (such as Exponential Decay) approximates the fitted correlation 

distribution well, it will be overwhelmingly favoured due to its parsimony. Finally, the 

non-Gaussian nature of the data can have a large effect on inference for a model which 

uses Gaussian distributions, with outliers potentially having a disproportionate effect on 

inferred parameters and state series. This final point is quite significant, with future 

work being required to address this disproportionate influence.  

7.2.7 Conditioning DRIP on HMM state series 

Chapter 6 explored conditioning a short timescale event-based stochastic rainfall model 

called DRIP on the HMM state series to preserve annual rainfall statistics – this 

represented the original motivation for this thesis. Frost et al. (2002) conditioned the 

DRIP model on the hidden state series of the original two-state HMM of Thyer (2001). 

This conditioning was motivated by the observation that the single-state DRIP model, 

typical of its genre, was underestimating annual variability because there was no 

explicit structure to incorporate long-term persistence. Although an improved 

reproduction in annual variability was observed using this conditioning, it was not clear 

which or how many sites to use in the HMM analysis. This motivated the introduction 

of the HMM generalisations coupled with Bayesian model averaging. 

Chapter 6 reported on this original case study and the conditioning on the model 

averaged hidden state series of the RHMM. Both of these case studies were based on 

pluviograph data collected at Sydney and Brisbane. 

The first case study (from Frost et al., 2002) demonstrated an improved reproduction of 

the annual rainfall distribution. This improvement was attributed to the ability of the 

HMM to conceptually incorporate the intra- and inter-annual persistence apparent in 

Australian rainfall. The HMM was applied only to those processes within DRIP that 

influence the number of storm arrivals, namely storm and inter-storm duration. 

Nonetheless, the lack of a formal method for selecting sites in the HMM resulted in a 



202 

 Chapter 7 - Conclusions 

heuristic approach which required all sites to have similar transition probabilities but 

could not guarantee state series were coherent. 

The second case study used a model averaged RHMM state series derived 

independently of the DRIP model. It was found that the annual distribution produced by 

the two-state DRIP model showed some sensitivity to the choice of state series with 

under or overestimation of annual variability resulting. These differences were 

attributed to possible misclassification of pluviograph data into inappropriate wet or dry 

years. In some cases the variability produced by the two-state DRIP model was greater 

than that observed in the annual rainfall records, suggesting that the hypothesis of two-

state storm durations and inter-storm durations can be questioned. 

It is noted that the conditional weighting of an event based model using the output series 

of a HMM (or its variants) can be used for any event based model which uses likelihood 

based inference. 

7.3 Future Work 
This study has made original and significant inroads to modelling the spatio-temporal 

stochastic structure of annual rainfall. However, there are significant opportunities for 

extending this work. 

7.3.1 Model structure 

In terms of overall model structure, other generalisations of the HMM are possible. A 

spatio-temporal HMM with each site’s state dependent not only on the previous 

timestep state, but also the state of surrounding sites seems a worthwhile extension to 

pursue. This approach is essentially a hybrid of HMM for time series and a Markov 

random field on a lattice. Such a model may reduce the reliance on BMS in choosing 

which model variant is most appropriate.  

Alternatively, related state space models such as the dynamic linear models (Sanso and 

Guenni, 2000) or the shifting mean models (Fortin et al., 2002, Sveinsson et al., 2003) 

could provide a flexible structure to capture the conceptual climate state variability. To 

the author’s knowledge, altering the climate state across different sites has not been 

undertaken in these models, and as such the approach taken here for the RHMM, could 

be applied to these models, breaking the sites into different climate regions with a 
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climate state modelled in each region. Also, the setup of the RHMM regional 

partitioning defining the model could be altered such that partitioning is undertaken 

through a hierarchical indicator within the model itself. This however would require 

reformulation of the indicator setup for identification purposes. 

Hierarchical models show great promise in modelling complex spatio-temporal 

processes (Wikle et al., 2001). There is opportunity within HMM to further exploit 

hierarchical structure. For example, means and variances could be modelled as coming 

from a regional pool/distribution. Also, only annual rainfall has been used in the 

calibration of the models used in this study. Other related atmospheric indices and 

variables such as the Southern Oscillation Index or the Interdecadal Pacific Oscillation 

could be incorporated into the HMM structure. This would at least make the 

simulations/predictions consistent with such indices automatically, such as in the GCM 

downscaling approach exemplified in Hughes et al. (1999). 

7.3.2 HMM variant structure 

The Markovian state structure and site groupings identified in the case studies have 

shown some sensitivity to the small-scale correlation structure. Exponential correlation 

decay with a Gaussian nugget effect for microscale variation should be trialled in 

further studies. Of significant importance is the issue of outliers, with Gaussian 

distributions being affected strongly. Use of a transformation (most likely mild) that 

makes the transformed data more closely approximated by a Gaussian distribution may 

reduce the splitting effect observed for the Brisbane Close RHMM case studies.  

7.3.3 MCMC sampling method 

Regarding model selection, the possibility of using Reversible Jump MCMC should be 

investigated further. It is believed this model jumping technique provides a much more 

efficient means at estimating posterior model weight, as it removes the need to evaluate 

the marginal likelihood for every model. It is warned however, that the RJMCMC is 

quite complex, and it is likely that implementation would require a significant amount 

of work.  

7.3.4 Missing data within the HMM variants 

Methods of incorporating missing data have not been included in this study. Given that 

the models are currently limited by the length of concurrent data, the model is currently 
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throwing away much data at the ends of the rainfall series based on the shortest record. 

Much of this information on the state series could be used to aid overall identification. 

Such a method is vital in areas with short ( )80 years<  annual rainfall records. 

7.3.5 Joint DRIP-HMM calibration in Bayesian framework 

It is recommended that to avoid misclassification of DRIP events a joint RHMM-DRIP 

calibration be undertaken, thus allowing the DRIP data to have an influence on the 

identification of the hidden state series. Because parameter uncertainty has not been 

incorporated in DRIP calibration so far, model selection using BMS has not been 

possible. Applying BMS to the joint RHMM-DRIP model would thus identify state 

series that are more consistent with the pluviograph data and enable formal model 

comparison of DRIP variants conditional on the resultant state series.  

7.4 Final Remarks 
Two new spatio-temporal HMM’s have been introduced in this thesis, with the purpose 

of capturing the persistent, spatially non-homogeneous nature of climate influence on 

rainfall series observed in Australia. Both of these methods are quite different to other 

attempts at modelling these series, in that non-homogenous persistent conceptual 

climate effects are explicitly incorporated in the model design.  

The conditioning of the event based rainfall model DRIP on the hidden state series of 

the HMM (or its variants) demonstrates the practical value of the HMM models. 

Modelling annual rainfall itself is not the major purpose. They have been used here to 

capture spatio-temporal variability and downscale hierarchically to a small timescale 

stochastic rainfall model. 
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Appendix A– Marginal Likelihood Normalising Constants 

A.1 Introduction 

Calculation of the marginal likelihood under parameter constraints was discussed in 

Section 4.5.2. If marginal likelihoods are to be compared, the prior distribution of the 

parameter that the constraint applies to must be normalised according to (4.13). 

Of the models considered in this study, calculation of these normalising constants were 

required for several parameters. Bounding on the mean parameters 

: 1,..., , ,site
i site d i D W= =µ  between upper ( ubnd ) and lower ( lbnd ) bounds was 

performed. Also, in calculating the Fitted Correlation marginal likelihoods, the uniform 

priors on the correlation parameters require normalisation for combinations which do 

not result in positive definite covariance matrices.   

A.2 Bounding constraint on wet and dry means 

Reiterating Section 4.5.3, the priors on the individual mean and variance parameters are 

specified by:  
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with the joint  probability of the state means and variance is defined as: 
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where Nf  and 2Inv
f −χ  are the distribution functions for the Normal and Inverse- 2χ   

distributions respectively. These functions are:  
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for the Normal, and: 
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For 2Inv
f −χ . For further details of these distributions see Gelman et al. (1995, Appendix 

A). 

Thankfully the denominator term in (A.2) can be calculated analytically for the 

hyperparameters used in this study (see Table 4.2). Substituting 0 siteyµ = , 1κ = , 

22
0 sitesσ =  , 0 2ν = and 0lbnd = , the denominator becomes:  
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(A.5). 

A.3 Positive definite constraint on correlation matrix 

The priors on the individual correlation coefficient parameters were uniform and 

bounded between [ ]0,0.95  for all site pairs:  

 [ ]0,0.95 : , 1,...,ij Uniform i j dρ =�  (A.6). 
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The joint probability of all correlation coefficients (over the unconstrained parameter 

space Θ ) is therefore: 
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However, this prior must be normalised for combinations of correlation coefficients 

which do not result in positive definite matrices. Rather than analytically calculating the 

normalising constant, numerical integration was used. The uniform prior for all sites 

was sampled from, producing multiple sets of correlation coefficient matrix. The 

normalising constant is determined by the proportion of these correlation matrix which 

are positive definite. That let ′Θ  be the constrained (positive definite) parameter space, 

the normalising constant for the prior (A.7) is:  
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 (A.8). 

This normalising constant was calculated for correlation coefficient matrix of dimension 

four as this is the number of sites used in case studies. 300,000,000 samples were used 

to ensure that the resulting acceptance ratio was not in error. The acceptance ratio, along 

with its log-space equivalent is presented in Table A.1. 

Table A.1 Full model marginal likelihoods and model weights 

Acceptance ratio 0.55478 

Log-space -0.58918 
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Appendix B – Case Study Marginal Likelihoods and Posterior Weights 

B.1 Introduction 

Within Chapter 5, several case studies were presented comparing the newly introduced 

HMM variants on four site groupings; Sydney Close/Far and Brisbane Close/Far. This 

analysis was based around the marginal likelihood, an integral factor in calculating 

model weight. The model marginal likelihoods are presented here, along with the 

resulting model weights (assuming uniform model priors). 

The results are divided into four sections. Section B.2 presents the full HMM, SHMM 

and RHMM marginal likelihoods (see Section 5.3 for details). Section B.3 presents the 

SHMM and RHMM variant marginal likelihoods, for both the Fitted Correlation 

(Section 5.4) and Exponential Decay Correlation parameterisations (Section 5.5). The 

marginal likelihood for the RHMM with a nugget effect term for two site groupings 

(Sydney and Brisbane Close – see Section 5.5.4) is given in Section B.4. The 7 site 

Fitted Correlation with nugget effect RHMM calibrations (mentioned in Section 5.6.1) 

are listed within B.5. 

B.2 Fitted Correlation Model Marginal Likelihoods 

Table B.2 Full model marginal likelihoods and model weights 

Site 
Grouping  HMM SHMM RHMM 

( )( )log |p My  -2971.65 -2972.27 -2972.75 Sydney 
Close 

Posterior Weight 0.5333 0.2884 0.1783 

( )( )log |p My  -3072.51 -3071.44 -3072.65 Sydney 
Far Posterior Weight 0.2085 0.6090 0.1825 

( )( )log |p My  -2887.86 -2885.28 -2877.45 Brisbane 
Close 

Posterior Weight 0.0000 0.0004 0.9996 

( )( )log |p My  -2370.04 -2369.53 -2367.30 Brisbane 
Far Posterior Weight 0.0553 0.0920 0.8526 
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B.3 HMM Variant Marginal Likelihoods 

Table B.3 Sydney Close RHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay RHMM 
Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood 

Posterior 
Weight 

Marginal 
Likelihood 

1,1,1,1 0.016 -2971.65 0.001 -2972.75 
1,1,1,2 0.000 -2975.85 0.037 -2969.32 
1,1,2,1 0.728 -2967.84 0.081 -2968.54 
1,1,2,2 0.007 -2972.43 0.000 -2977.74 
1,1,2,3 0.165 -2969.32 0.015 -2970.26 
1,2,1,1 0.000 -2978.63 0.000 -2973.69 
1,2,2,1 0.034 -2970.89 0.460 -2966.81 
1,2,2,2 0.000 -2976.57 0.000 -2979.49 
1,2,2,3 0.003 -2973.49 0.196 -2967.66 
1,2,3,1 0.039 -2970.75 0.172 -2967.79 
1,2,3,2 0.001 -2974.35 0.001 -2973.33 
1,2,3,3 0.000 -2976.43 0.000 -2977.85 
1,2,3,4 0.005 -2972.75 0.035 -2969.38 

Table B.4 Sydney Close SHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay SHMM 
Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood 

Posterior 
Weight 

Marginal 
Likelihood 

F,F,F,F 0.022 -2971.25 0.001 -2972.21 
T,F,F,F 0.001 -2974.56 0.000 -2976.01 
F,T,F,F 0.003 -2973.24 0.000 -2973.33 
T,T,F,F 0.000 -2975.61 0.000 -2975.16 
F,F,T,F 0.255 -2968.82 0.014 -2969.03 
T,F,T,F 0.026 -2971.09 0.002 -2971.04 
F,T,T,F 0.174 -2969.20 0.038 -2968.06 
T,T,T,F 0.019 -2971.43 0.007 -2969.81 
F,F,F,T 0.014 -2971.75 0.015 -2968.95 
T,F,F,T 0.001 -2974.56 0.016 -2968.91 
F,T,F,T 0.003 -2973.20 0.005 -2970.02 
T,T,F,T 0.001 -2974.29 0.105 -2967.04 
F,F,T,T 0.296 -2968.66 0.152 -2966.67 
T,F,T,T 0.026 -2971.10 0.011 -2969.28 
F,T,T,T 0.151 -2969.34 0.600 -2965.30 
T,T,T,T 0.008 -2972.27 0.034 -2968.17 

 



223 

 Appendices 

Table B.5 Sydney Far RHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay RHMM 
Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood 

Posterior 
Weight 

Marginal 
Likelihood 

1,1,1,1 0.043 -3072.51 0.000 -3077.32 
1,1,1,2 0.003 -3075.16 0.003 -3074.61 
1,1,2,1 0.001 -3076.36 0.005 -3074.10 
1,1,2,2 0.079 -3071.90 0.247 -3070.20 
1,1,2,3 0.022 -3073.18 0.712 -3069.15 
1,2,1,1 0.005 -3074.65 0.000 -3079.14 
1,2,1,2 0.002 -3075.58 0.000 -3077.52 
1,2,1,3 0.006 -3074.56 0.002 -3075.06 
1,2,2,2 0.541 -3069.98 0.000 -3079.15 
1,2,2,3 0.020 -3073.30 0.000 -3076.80 
1,2,3,2 0.006 -3074.44 0.002 -3074.95 
1,2,3,3 0.234 -3070.82 0.001 -3076.24 
1,2,3,4 0.038 -3072.65 0.027 -3072.42 

Table B.6 Sydney Far SHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay SHMM 

Model 

Label 
Posterior 

Weight 

Marginal 

Likelihood 

Posterior 

Weight 

Marginal 

Likelihood 

F,F,F,F 0.008 -3072.04 0.000 -3077.37 
T,F,F,F 0.364 -3068.22 0.000 -3077.18 
F,T,F,F 0.007 -3072.20 0.000 -3077.30 
T,T,F,F 0.461 -3067.98 0.000 -3076.47 
F,F,T,F 0.001 -3074.14 0.005 -3073.12 
T,F,T,F 0.040 -3070.42 0.081 -3070.26 
F,T,T,F 0.002 -3073.48 0.017 -3071.83 
T,T,T,F 0.027 -3070.80 0.253 -3069.11 
F,F,F,T 0.001 -3074.01 0.002 -3073.92 
T,F,F,T 0.023 -3070.98 0.001 -3075.19 
F,T,F,T 0.004 -3072.68 0.001 -3075.02 
T,T,F,T 0.019 -3071.17 0.017 -3071.79 
F,F,T,T 0.004 -3072.82 0.150 -3069.63 
T,F,T,T 0.013 -3071.55 0.124 -3069.83 
F,T,T,T 0.012 -3071.64 0.164 -3069.54 
T,T,T,T 0.015 -3071.44 0.185 -3069.42 
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Table B.7 Brisbane Close RHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay RHMM 

Model 

Label 
Posterior 

Weight 

Marginal 

Likelihood 

Posterior 

Weight 

Marginal 

Likelihood 

1,1,1,1 0.000 -2887.86 0.000 -2882.02 
1,1,1,2 0.000 -2886.45 0.000 -2882.06 
1,1,2,1 0.000 -2891.03 0.000 -2895.67 
1,1,2,2 0.000 -2888.30 0.000 -2893.80 
1,1,2,3 0.000 -2885.89 0.000 -2892.26 
1,2,1,1 0.001 -2884.50 0.043 -2872.62 
1,2,1,3 0.012 -2881.71 0.932 -2869.54 
1,2,2,1 0.001 -2884.49 0.000 -2884.15 
1,2,2,2 0.003 -2883.17 0.000 -2883.67 
1,2,2,3 0.038 -2880.56 0.000 -2880.09 
1,2,3,1 0.024 -2881.02 0.000 -2877.94 
1,2,3,3 0.057 -2880.17 0.001 -2877.06 
1,2,3,4 0.864 -2877.45 0.025 -2873.16 

Table B.8 Brisbane Close SHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay SHMM 
Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood 

Posterior 
Weight 

Marginal 
Likelihood 

F,F,F,F 0.001 -2887.25 0.003 -2881.45 
T,F,F,F 0.095 -2882.27 0.001 -2883.20 
F,T,F,F 0.000 -2888.25 0.076 -2878.28 
T,T,F,F 0.030 -2883.43 0.049 -2878.72 
F,F,T,F 0.000 -2891.61 0.000 -2885.16 
T,F,T,F 0.005 -2885.13 0.000 -2887.75 
F,T,T,F 0.000 -2890.21 0.010 -2880.36 
T,T,T,F 0.001 -2886.87 0.001 -2882.41 
F,F,F,T 0.002 -2885.99 0.007 -2880.65 
T,F,F,T 0.699 -2880.27 0.002 -2882.19 
F,T,F,T 0.001 -2887.07 0.337 -2876.80 
T,T,F,T 0.129 -2881.96 0.383 -2876.67 
F,F,T,T 0.000 -2888.80 0.000 -2883.90 
T,F,T,T 0.032 -2883.36 0.030 -2879.22 
F,T,T,T 0.000 -2888.79 0.076 -2878.28 
T,T,T,T 0.005 -2885.28 0.026 -2879.37 
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Table B.9 Brisbane Far RHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay RHMM 

Model 

Label 
Posterior 

Weight 

Marginal 

Likelihood 

Posterior 

Weight 

Marginal 

Likelihood 

1,1,1,1 0.043 -2370.04 0.002 -2371.27 
1,1,1,2 0.003 -2370.16 0.000 -2373.40 
1,1,2,1 0.001 -2369.16 0.001 -2372.09 
1,1,2,2 0.079 -2368.18 0.002 -2371.29 
1,1,2,3 0.022 -2368.87 0.001 -2372.19 
1,2,1,1 0.005 -2366.30 0.580 -2365.46 
1,2,1,2 0.002 -2368.67 0.002 -2371.03 
1,2,1,3 0.006 -2367.28 0.023 -2368.71 
1,2,2,2 0.541 -2369.10 0.005 -2370.13 
1,2,2,3 0.020 -2367.90 0.031 -2368.38 
1,2,3,2 0.006 -2368.00 0.013 -2369.27 
1,2,3,3 0.234 -2365.99 0.201 -2366.52 
1,2,3,4 0.038 -2367.30 0.140 -2366.88 

Table B.11 Brisbane Far SHMM variants posterior model probabilities 

Fitted Correlation Exponential Decay SHMM 
Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood 

Posterior 
Weight 

Marginal 
Likelihood 

F,F,F,F 0.006 -2370.82 0.009 -2370.93 
T,F,F,F 0.079 -2368.32 0.035 -2369.61 
F,T,F,F 0.048 -2368.82 0.067 -2368.94 
T,T,F,F 0.070 -2368.45 0.112 -2368.43 
F,F,T,F 0.053 -2368.73 0.009 -2370.90 
T,F,T,F 0.202 -2367.38 0.045 -2369.35 
F,T,T,F 0.051 -2368.76 0.146 -2368.17 
T,T,T,F 0.028 -2369.38 0.137 -2368.23 
F,F,F,T 0.034 -2369.18 0.002 -2372.54 
T,F,F,T 0.101 -2368.08 0.102 -2368.52 
F,T,F,T 0.021 -2369.67 0.007 -2371.20 
T,T,F,T 0.018 -2369.79 0.038 -2369.52 
F,F,T,T 0.059 -2368.61 0.008 -2371.03 
T,F,T,T 0.196 -2367.41 0.200 -2367.85 
F,T,T,T 0.011 -2370.31 0.036 -2369.57 
T,T,T,T 0.024 -2369.53 0.046 -2369.32 
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B.4 RHMM Variant Marginal Likelihoods – Nugget effect 

Table B.12 Sydney Close HMM variants with nugget effect posterior model probabilities 

Fitted Correlation with 

nugget effect 

Exponential decay with 

nugget effect RHMM 

Model 

Label Posterior 

Weight 

Marginal 

Likelihood 

Posterior 

Weight 

Marginal 

Likelihood 

1,1,1,1 0.014 -2972.72 0.007 -2969.09 
1,1,1,2 0.000 -2977.58 0.004 -2969.72 
1,1,2,1 0.735 -2968.76 0.102 -2966.44 
1,1,2,2 0.018 -2972.48 0.000 -2974.43 
1,1,2,3 0.170 -2970.23 0.002 -2970.22 
1,2,1,1 0.000 -2979.54 0.003 -2969.98 
1,2,2,1 0.016 -2972.62 0.674 -2964.56 
1,2,2,2 0.000 -2977.20 0.000 -2972.94 
1,2,2,3 0.002 -2974.49 0.018 -2968.18 
1,2,3,1 0.039 -2971.71 0.185 -2965.85 
1,2,3,2 0.002 -2974.46 0.000 -2973.10 
1,2,3,3 0.000 -2976.90 0.000 -2974.14 
1,2,3,4 0.004 -2974.10 0.004 -2969.66 

Table B.13 Brisbane Close HMM variants with nugget effect posterior model probabilities 

Fitted Correlation with 

nugget effect 

Exponential decay with 

nugget effect RHMM 

Model 

Label Posterior 

Weight 

Marginal 

Likelihood 

Posterior 

Weight 

Marginal 

Likelihood 

1,1,1,1 0.001 -2766.75 0.000 -2759.70 
1,1,1,2 0.005 -2765.26 0.000 -2759.99 
1,1,2,1 0.000 -2771.33 0.000 -2777.08 
1,1,2,2 0.000 -2770.55 0.000 -2769.37 
1,1,2,3 0.000 -2768.37 0.000 -2776.37 
1,2,1,1 0.068 -2762.66 0.050 -2752.00 
1,2,1,3 0.867 -2760.12 0.950 -2749.05 
1,2,2,1 0.000 -2768.88 0.000 -2765.36 
1,2,2,2 0.000 -2769.90 0.000 -2767.40 
1,2,2,3 0.001 -2767.21 0.000 -2764.26 
1,2,3,1 0.002 -2766.23 0.000 -2761.83 
1,2,3,3 0.006 -2765.06 0.000 -2761.24 
1,2,3,4 0.049 -2762.99 0.000 -2757.68 

 



227 

 Appendices 

B.5 RHMM Variant 7 Site initial tests 

Note: Culling of models was performed to reduce the computation time  The number of 

regions had a maximum of three. The minimum number of sites in a region was 2. 

Table B.14 7 Site Sydney 1886-1993 RHMM variants with Exponential Decay correlation and 

nugget effect posterior model probabilities 

Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood Model Label Posterior 

Weight 
Marginal 

Likelihood 
1,1,1,1,1,1,1 0.000011 -5018.96 1,1,2,2,3,3,2 0.021922 -5011.40 
1,1,1,1,1,2,2 0.000002 -5020.52 1,1,2,2,3,3,3 0.000008 -5019.28 
1,1,1,1,2,1,2 0.000009 -5019.14 1,1,2,3,2,3,2 0.000009 -5019.24 
1,1,1,1,2,2,1 0.004241 -5013.04 1,1,2,3,3,1,2 0.192125 -5009.23 
1,1,1,1,2,2,2 0.000001 -5021.24 1,1,2,3,3,2,2 0.235293 -5009.03 
1,1,1,2,1,1,2 0.000000 -5024.14 1,1,2,3,3,3,2 0.135846 -5009.58 
1,1,1,2,1,2,1 0.011464 -5012.05 1,2,1,1,1,1,2 0.000008 -5019.33 
1,1,1,2,2,1,1 0.075175 -5010.17 1,2,1,1,1,2,1 0.000002 -5020.87 
1,1,1,2,2,1,2 0.000015 -5018.68 1,2,1,1,1,2,2 0.000026 -5018.15 
1,1,1,2,2,2,1 0.285629 -5008.83 1,2,1,1,2,1,2 0.000000 -5024.68 
1,1,1,2,2,2,2 0.000016 -5018.62 1,2,1,1,2,2,1 0.000000 -5026.98 
1,1,1,2,2,3,3 0.003268 -5013.30 1,2,1,1,2,2,2 0.000000 -5024.24 
1,1,1,2,3,2,3 0.000065 -5017.22 1,2,1,1,3,2,3 0.000001 -5022.05 
1,1,1,2,3,3,2 0.000019 -5018.45 1,2,1,1,3,3,2 0.000006 -5019.54 
1,1,2,1,1,1,2 0.003278 -5013.30 1,2,2,1,1,1,1 0.000000 -5023.91 
1,1,2,1,1,2,2 0.000853 -5014.65 1,2,2,1,1,1,2 0.001106 -5014.39 
1,1,2,1,2,1,2 0.000005 -5019.83 1,2,2,1,1,2,1 0.000000 -5023.50 
1,1,2,1,2,2,2 0.000142 -5016.44 1,2,2,1,1,2,2 0.001088 -5014.40 
1,1,2,1,3,3,2 0.009452 -5012.24 1,2,2,1,1,3,3 0.000043 -5017.64 
1,1,2,2,1,1,1 0.000000 -5023.23 1,2,2,1,2,1,2 0.000027 -5018.09 
1,1,2,2,1,1,2 0.000988 -5014.50 1,2,2,1,2,2,1 0.000000 -5025.57 
1,1,2,2,1,2,1 0.000011 -5018.97 1,2,2,1,2,2,2 0.000036 -5017.80 
1,1,2,2,2,1,1 0.006142 -5012.67 1,2,2,1,3,1,3 0.000001 -5021.27 
1,1,2,2,2,1,2 0.000066 -5017.21 1,2,2,1,3,2,3 0.000000 -5024.35 
1,1,2,2,2,2,1 0.003900 -5013.13 1,2,2,1,3,3,1 0.000000 -5022.19 
1,1,2,2,2,2,2 0.000089 -5016.90 1,2,2,1,3,3,2 0.001502 -5014.08 
1,1,2,2,2,3,3 0.001484 -5014.09 1,2,2,1,3,3,3 0.000000 -5024.64 
1,1,2,2,3,1,3 0.000012 -5018.95 1,2,3,1,1,2,3 0.003414 -5013.26 
1,1,2,2,3,2,3 0.000007 -5019.52 1,2,3,1,2,2,3 0.000844 -5014.66 
1,1,2,2,3,3,1 0.000348 -5015.54 1,2,3,1,3,2,3 0.000000 -5023.35 

Sites : Bingara, Mudgee, Mt Vic/Blackheath, Sydney, Moss Vale, Moruya Heads, 

Taralga 
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Table B.15 7 Site Brisbane 1900-1986 RHMM variants with Exponential Decay correlation and 

nugget effect posterior model probabilities 

Model 
Label 

Posterior 
Weight 

Marginal 
Likelihood Model Label Posterior 

Weight 
Marginal 

Likelihood 
1,1,1,1,1,1,1 0.019869 -4100.15 1,2,2,1,2,1,2 0.000000 -4117.91 
1,1,1,1,1,2,2 0.000276 -4104.42 1,2,2,1,2,2,1 0.000000 -4119.43 
1,1,1,1,2,1,2 0.002636 -4102.17 1,2,2,1,2,2,2 0.000090 -4105.55 
1,1,1,1,2,2,1 0.001070 -4103.07 1,2,2,1,2,3,3 0.001933 -4102.48 
1,1,1,1,2,2,2 0.016528 -4100.33 1,2,2,1,3,1,3 0.001204 -4102.95 
1,1,1,2,1,1,2 0.000000 -4119.44 1,2,2,1,3,3,1 0.033805 -4099.62 
1,1,1,2,2,1,1 0.000257 -4104.49 1,2,2,1,3,3,3 0.099795 -4098.53 
1,1,1,2,2,1,2 0.000000 -4116.86 1,2,2,2,1,1,1 0.081125 -4098.74 
1,1,2,2,1,1,1 0.202388 -4097.83 1,2,2,2,1,1,2 0.000200 -4104.75 
1,1,2,2,1,1,2 0.015539 -4100.39 1,2,2,2,2,1,1 0.005633 -4101.41 
1,2,1,1,2,1,1 0.001263 -4102.90 1,2,2,2,2,1,2 0.000025 -4106.83 
1,2,1,1,2,1,2 0.000000 -4119.87 1,2,2,2,3,1,3 0.000725 -4103.46 
1,2,1,1,2,2,1 0.000274 -4104.43 1,2,2,3,1,1,3 0.000882 -4103.26 
1,2,1,1,2,2,2 0.017869 -4100.25 1,2,2,3,2,1,3 0.000409 -4104.03 
1,2,1,1,2,3,3 0.035436 -4099.57 1,2,2,3,3,1,1 0.075837 -4098.81 
1,2,2,1,1,1,1 0.018581 -4100.22 1,2,2,3,3,1,3 0.004366 -4101.66 
1,2,2,1,1,2,2 0.000000 -4118.38 1,2,3,3,2,1,1 0.333421 -4097.33 
1,2,2,1,1,3,3 0.001854 -4102.52 1,2,3,3,2,1,2 0.017665 -4100.27 
1,2,2,1,2,1,1 0.001032 -4103.11 1,2,3,3,2,1,3 0.008015 -4101.06 

Sites : Cape Capricorn, Caboolture, Cape Moreton, Brisbane, Pittsworth, Miles, 

Bingara. 
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Figure B.1  7-Site State Series probabilities for (a) Sydney and (b) Brisbane 

 

 

 

 

 

 

 

 

 


